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Factors Affecting Reattachment of Supersonic Flows

NOTATION
List of Symbols
y = cp/cv ratio of the specific heats of the fluid under
consideration
o] mixing parameter (see page 12)
JC%P rectangular coordinate system for points in the

physical plane, orientated so that the J-axis
coincides with the theoretical boundary of the
jet exhausting into a perfect fluid

X,y local coordinate system linked directly to the
local velocity profile

4L,m curvilinear coordinate system for points in the
physical plane based on the families of Mach lines

B physical thickness of the boundary layer

D diameter of the afterbody of a configuration

h height of separated-flow region, or radius of the
blunt-ended body

T radius of curvature of the leading edge

np position parameter (see page 9)

¢ = y/b reduced normal coordinate

n = g.np reduced position coordinate

A epicycloidal coordinates applicable in the hodograph
plane

] angle that the velocity vector makes with a reference
direction selected in the physical plane

¥ reattachment angle (see Figure 1)

€ angle of attack of a flat plate (see page 61)

a Mach angle (sin a = 1/M).

X curvature of a streamline

u local velocity

U hypothetical velocity (see Eq. 4' on page 14)
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reduced velocity, ¢ = u/u1
reduced velocity occurring on the discriminating
streamline

speed of sound

limiting velocity of the flow, Lo > =1 24

when expanded to a vacuum

Mach number

Prandtl-Meyer pressure function (see page 21)

areal variation, as a function of Mach number, for
a streamtube subjected to isentropic flow processes
pressure

density

temperature

temperature profile described on page 3

enthalpy

entropy

reduced entropy, s = S/yR

entropy gradient taken in a direction lying normal
to a streamline

tangential gradient of the pressure along a stream-
line (see page 65)

mass flow

mass flow coefficient, Cq = q/(plulh)

momentum exchange

momentum exchange coefficient, Cu = 2J/(p1u§h)

coefficient signaling the influence of streamline
curvature CAp indicates the curvature coefficient in
plane two-dimensional flOW,er indicates the curvature
coefficient for axially symmetric flow)

actual thickness of the momentum boundary layer
displacement thickness of the boundary layer
displacement thickness of the boundary layer in
incompressible flow (see page 47)

momentum thickness of the boundary layer



ey

R e a1

Indices

refers to the undisturbed flow far upstream from

any obstacle

refers to the state of the flow which is attained
just ahead of the blunt-ended base of the body

about which an expansion is to take place

refers to the inviscid and constant pressure region
of the flow which is presumed to exist outside of
the mixing zone downstream of the expansion corner
refers to the state of the flow attained downstream
of the reattachment point

relates to conditions obtained by bringing the flow
to a stop isentropically

indicates a jet boundary

indicates the discriminating streamline for the
reattachment flow

denotes a streamline serving as a reference boundary
denotes any arbitrary general streamline in the flow
refers to pressure existing on the base of the body;

i.e., p,

a barred symbol signifies that it pertains to the
reference ideal configuration; i.e., the boundary

layer is assumed to be practically non-existent
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SUMMARY

The theoretical results are first reviewed that pertain
to prediction of base pressures, as obtained by several authors
[1,8]. A linearized method is then presented for calculation of
the influence exerted by the several contributing factors upon
the conditions found at reattachment. In particular it has been
found possible to deduce a very simple relation linking the
effect of a boundary layer upon the reattachment with the influence
of a jet injected into the dead-water region.

A calculational procedure is then recommended for de-
termination of the influence that certain parameters have in
shaping the curved jet boundary. This method is especially suit-
able to the study of reattachment in cases where a circular jet
of not just the ordinary type is to be treated (i.e., where entropy
non-uniformities are to be accounted for, or where the rear end of

the body is curved appreciably).
I. INTRODUCTION

In Figure 1 a schematic model of supersonic flow ex-
periencing reattachment is illustrated, for the case of a plane
two-dimensional configuration in order to make the concepts most
precise, This way of representing and discussing the phenomenon
associated with reattachment of a supersonic stream seems most
direct and unequivocal for present purposes. The stream separates
from the rearward facing step at point B and reattaches itself to
the wall at point R. In bridging this hollow, therefore, the
energetic flow has imprisoned a dead-water region composed of very
feeble recirculating currents, having a relatively low speed, in
comparison to the average unretarded speed representative of the

passing energetic flow.
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Figure 1
Flow Past a Rearward-Facing Step in Two-Dimensional (Plane) Case

Experimental research on these matters demonstrates that
along the path B to C the flow next to the dead-water region experi-
ehces practically no pressure gradient (the flow is isobaric) while
the sequential laminae or fluid layers lying near to the boundary
between the separated flow and the dead-water region resemble a jet
in which the speed varies rapidly and continuously as one makes a
traverse in a direction normal to the jet flow lines. This region
of rapid change in stream velocity is called the '"mixing zone"
because under the influence of viscosity various transport processes
take place between the external energetic stream and the inner dead-
water flow. In this manner not only is momentum transferred from

one layer to the next but even conduction and diffusion phenomena

TR
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In consequence, the character of the flow at the time
that the reattachment starts to take place at point C may be
designated by two quantities: one is the mean direction of the
approaching flow which makes the angle ¥ with the final direction
assumed after reattachment, and the second is the local distribu-
tion of velocities and densities (or temperatures) in the mixing
region, which are represented symbolically by the relations

T

u . o o1
o(y) and o T o(y).

U 1

On closer examination of the flow field it will be
observed that there is one particular streamline (t) which leads
to the stagnation point R. This discriminating streamline is so
situated that all streamlines which lie inboard of (1), i.e., for
y < y{, will, of necessity, be turned back into the dead-water zone
as the flow approaches the point R, while all the streamlines which
lie outboard of (L), i.e., for y:>yL, will find their way on down-
stream past the point R.

If no suction or blowing is permitted to disturb the
streamline pattern in the dead-water region it is quite clear that
the discriminating streamline (4) will coincide with the jet stream-
line (j) which issues from the corner B. If, however, a certain
steady stream of fluid is injected into the dead-water zone, then
a steady exchange of flow will take place so that an equal quantity
of fluid to that introduced upstream will escape downstream at
the location R. In this instance the discriminating streamline
(¢) will be situated inboard of the jet boundary j. 1In the
opposite case, when suction is applied in the dead-water zone,
the amount of fluid which is withdrawn from the dead-water region

has to be compensated for by skimming off an equivalent amount of
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fluid from the outboard flow. Thus, in this instance the dis-
criminating streamline must lie farther outboard than the jet
boundary, j. See Figure 2,

Blowing

Figure 2

Discriminating Streamlines for Base Flows with Different Types
of Ventilation

‘A number of authors have made use of the assumptibn,
called the '"capture" hypothesis, which premises that the stagnation
pressure (which results if the flow is brought to rest isentropi-
cally), associated‘with the discriminating streamline ({) as a
result of the mixing processes which are taking place in the sepa-
rated flow, must be set equal to the pressure Poy which is attained
by the external flow after it has undergone a deflection through
the angle ¥. This hypothesis, although strictly true only for a
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rather idealized and simplified version of the reattaching flow,
nevertheless, has the advantage of establishing a working relation
between the flow parameters VY, eL, and m&, which seems to be
confirmed by practical experience in the case of two-dimensional

plane flows, save for some cautionary asides which must be observed.

This hypothesis is the foundation upon which the treatment

discussed here is to be built.

The essential factors which govern what the conditions
of the flow shall be at reattachment are, thus, in view of what

has just been said, the following:

(a) the internal fundamental factors describing the local behavior
of the flow which reflect the type and extent of mixing that
has occurred, as specified through means of the quantities
©® and O, or which produce a change in position of the dividing

streamline, as result of blowing or sucking.

(b) the external factors which act to change the curvature of the
jet~like flow issuing from off the shoulder of the base during
the whole period when mixing is taking place. That is to say,
the factors in question act to control the direction that the

jet flow acquires just before the moment of reattachment.

The most easily analyzed situation which obeys the stipu-
lations resulting in a flow such as the one shown in Figure 1 is
the case of a uniform two-dimensional plane flow, for which the
upstream Mach number is Mo and the static pressure is P, ahead of
the step, and which, above all, admits of practically no boundary

layer thickness in comparison with the height h of the rearward
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facing step at the point B. At this corner the previously undis-
turbed flow becomes detached and undergoes a'éhange of direction
of amount ¢1° Because of this angular deviation, the external
inviscid flow takes on new values, M1 and Py for its local Mach
number and pressure after negotiating the turn. Along the entire
stretch of the isobaric zone BC the direction of this external

inviscid flow remains fixed at the angle I

Thanks to the stipulation of the "escape" hypothesis
the subsequent angular deflection, Y(Ml), experienced by the flow
at the reattachment point can be determined by having recourse to
results deduced from analysis of the mixing processes involved.

Consequently, if the value of M, is known, then one may obtain the

1
angle of the wall along which the flow courses after reattachment,
¢2, as an incremental deflection from the direction of the upstream
flow. Expressed analytically, this relationship between the flow

directions may be written as

(1) by = ¥ + Y(Ml) where w1<:0 for pl/po < 1,

Contrariwise, if the final direction g is specified
(the orientation of the downstream wall to which the stream re-
attaches is given) the above-written expression serves to determine
the value of w(Ml), and, consequently, the pressure in the inviscid

flow downstream of the turn executed at the corner B may be found.

This very elementary flow configuration has already
received the careful attention of a number of competent workers in
the field, and, thus, this simple case may be used as a basic
reference configuration. When more complicated cases come under

examination in subsequent developments in which certain perturbating
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elements are allowed to intrude, it will be most illuminating to
discuss and compare these less idealized situations with the flow

pattern obtained in this basic model or reference example,

In illustration of what is meant by an internal funda-
mental factor influencing the reattachment, the state and extent
of the boundary layer at the corner B may be cited. It will be
shown how a thin turbulent boundary layer, that is not negligibly
thin in comparison to the step-height h, will exert its influence
upon the reattachment phenomena. Likewise, the importance of a
temperature variation in the '"dead-water" region will be discussed

on theoretical grounds.

In addition, it will be demonstrated that a simple direct
relation exists between the effects of blowing and the presence of

a non-negligibly thin boundary layer.

The theoretical analysis of the effects produced by these
internal fundamental factors will be supported by a collection of

pertinent experimental data.

In the second part of this investigation, the influence
on the reattachment of so-called 'curvature factors” will be
examined. It will be shown how, theoretically, the results obtained
in the first part of the paper for the case of two-dimensional
plane flow may be extended to apply to cases where the approaching
stream is perturbed from the two-dimensional pattern by certain

"curvature factors', which may arise because either:

(1) the forebody from which the flow separates is a body of

revolution, or
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(2) the upstream flow is not uniform but, before separation, it
has been subjected to some form of perturbation caused by
such things as a curved surface on the forebody, the presence
of entropy gradients, or the persistent effects of pressure
gradients.,

The results of the theoretical derivations will be com-

pared with observations made from appropriate experiments.

Even though the practical situations treated herein and
the analogous experimental verifications have been limited to the
case of turbulent flows, it is quite evident that one may convert
the treatment presented, without any essential difficulty, to

apply equally well when the boundary layer is laminar.

It is equally obvious that all the results discussed in
this paper are directly applicable to the problem of determining

base pressures under similar circumstances.

II. THEORETICAL AND EXPERIMENTAL INVESTIGATION OF THE
INTERNAL FUNDAMENTAL FACTORS INVOLVED IN REATTACHMENT

First of all the Korst theory will be recapitulated and
generalized, and then the reattachment-angle hypothesis will be
introduced. These concepts are then to be applied to the basic
reference configuration. After examining this primitive situation
it is then shown how the introduction of various perturbing
factors affectsthe results. It is observed that such perturbations
can affect the conditions under which the mixing zone is formed and
developed, so that, in turn, the modified mixing processes can
alter the way the reattachment takes place.
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The case of weak perturbations is handled by resort
to a linearization technique. This approach leads to the
establishment, for one thing, of a very simple but useful
connection between the effect on reattachment of the boundary
layer in the approaching flow and the effect produced by injec-
tion of fluid into the dead-water region by blowing.

These analytic derivations are followed and buttressed
by carrying out a comparison with the results obtained from
selected experiments.

I1.1 - Calculational Approach

I1.1.0 - The theoretical derivation of the '"escape' criterion
rests on the study of the nature of the flow in the mixing region.
The ideas involved originated in the study of jets and are carried
over here to good advantage. It is taken for granted in this
analysis that the velocity profiles ¢(y;x) and the density pro-
files p(y;x) exhibit similitude, i.e., they are independent of
their x-position along the jet boundary. To be more precise about
- this statement the following mathematical formulation is assumed
to hold true. Let a convenient reference length be selected, to
be designated by the symbol 5. It is then premised that a position
parameter can always'be devised in the form

s} X
T =% f(5>

in which the function f(:%) remains bounded regardless of the

size of x, which is considered positive. Furthermore, one may
formally designate a non-dimensional normal coordinate in the

flow to take the form
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When this is done, the similitude assumption mentioned above may
be expressed unequivocally by the following universal functions
describing the velocity and density profiles of interest:

v = cp(n;np)

and 6 = G(n;np,ul)
which are to obey the general Navier-Stokes equations and which
are to be in suitable form for satisfying the boundary conditions

pertinent to this present problem.

II1.1.1 - Description of the Velocity Profile ¢

At the origin of coordinates, i.e., at the location of
the corner B, where x ='0, the velocity profile has the following
character:

o =0 for n ~ y<0

p = ¢1<%> - ml(g) for 0 <y <8 (the boundary layer is taken
to be equivalent to the one produced in
the approaching plane flow)

p =1 for y>5

where 5 has been selected as the thickness of the boundary layer
of the approaching flow at the location B.

At any location lying downstream of the corner B, for
which the abscissa x takes on a positive value, the velocity pro-
file has the following nature:

(=) =0 the dead-water region is entered
p(4e) =1 the external inviscid flow region is entered
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An approximate solution for the velocity-profile function
satisfying these conditions may be obtained with little effort
provided the agreement is accepted that the strict Navier-Stokes
equations may be relaxed and in their place the simplified dif-
ferential expression given by S.I. Pai substituted. This less
stringent requirement takes the form of

2
ou e(x) 9"u
(1) = = .
ox uy ay2

In the case of turbulent mixing, which is the only
situation to be considered here, the solution for the boundary
layer profile development is found by inserting the expressions
given above for the similar velocity profiles into Pai's dif-
ferential equation. The result of carrying out the indicated
quadrature is then found to be

n 2
(2) oMm,n)) -1 [i + erf (n - n.E]+‘_l_ ’)rm (" =Bl e B 4g
P’ 2 L N 1\, )
n

The location parameter np evidently depends on the mixing co-
efficient e(x), but if one is content to confine his attention
only to that part of the flow which is sufficiently far removed
from the origin it may be legitimately assumed that the location
parameter is given simply by the ratio

= 6x
np 0d/

which can be taken as sufficiently accurate for values of the
abscissa which are large in comparison with the initial thickness
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of the boundary layer 5 (i.e,, one must be far enough downstream
from the shoulder B to ensure that x/5 is in the order of 10 or
greater). In this ratio the proportionality factor g will be a
function only of the external inviscid flow Mach number, M

1
(see Reference 1).

In the special case, which is a common and very im-
portant one, where the initial boundary layer thickness at the
shoulder B is completely negligible in extent (5—> 0) there is
no reference length upon which to base the similarity development,
and it is nonsensical to talk of a location parameter np. In
this instance it is permissible to express the velocity profile o
simply as a function of a normal non-dimensionalized ordinate
described by the affine relation
y

nm=o0x

and, in consequence, one obtains a suitable solution for the
similar profiles by inserting the value of "p = 0 into Eq. (2),
to find formally that in this case

2" () =% (1 + erf 1)

I1.1.2 -~ Description of the Density Profile ©

The choice of the density profile © wili next be made
in such a manner as to best provide for taking into account the
thermal transport processes which occur in the mixing zone. This
inclusion of the thermal aspects of the mixing will be accomplished
by having recourse to the same hypotheses which have already been
well substantiated in carrying out classical boundary layer in-
vestigations.
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Let it be assumed for present purposes, therefore, that
the total enthalpy is conserved. This assumption implies clearly
that the enthalpy of the dead water is equal to the stagnation
enthalpy of the exterior inviscid flow. If, furthermore, the
convention is agreed to that the limiting velocity attained when
the exterior inviscid flow is expanded into a vacuum is to be de-
noted by Wy and if the ratio of the actual velocity to the value

w, is then denoted by uy, it follows, by appeal to the law of con-

1
servation of energy, that one then may relate the local velocity,
as measured by the quantity ¢ U, and the density profiles through

the expression

2
T 1 - u
1 1
(3) 0=2F =_2-=
[ T 2 2
1 l-u1 )

If, on the other hand, the stagnation enthalpy Hm of
the dead water happens to be different than the stagnation enthalpy
of the exterior inviscid flow, then this deficiency may be expressly
stated in the form
2

Hm ol Hi where L # 1,

Once again, though, by having recourse to the law of conservation
of energy one may relate the local velocity and density profiles
through use of the slightly altered expression

1l - uf

e =
2 2
w —ul o

2

where w denotes the local reduced limiting velocity attainable by a
fluid particle travelling along a streamline imbedded in the mixing
region. The connection between © and ¢ is not specified fully as
yet in this instance since one must also stipulate the behavior

of w as a function of the normal coordinate m of the profile,.
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This choice of the function wz(n) must be made in such a way as
to assure that at the extremities of the profile the following
compatibility conditions are obeyed

w2(+en) =1
w2(~m) = wj

while at the same time this enthalpy-deficiency must behave on

a traverse across the mixing zone in a manner which is similar to
the variation exhibited by the velocity profile mz(n). It is
permissible for present purposes, therefore, to take the enthalpy
deficit to have the following form

2 2 2 2
LA M R (1 - wm)

so that, in consequence, the density variation is seen to be
expressible as

1l - u2

1

(4) 6 =
2 2 2 2
LA .(ul + W

- 1)

which thus constitutes a generalization of Eq. (3), which was only
valid when the total enthalpy was constant.

It may be worthy of mention that the generalized expres-
sion for the density profile may be cast into a form exactly
equivalent to Eq. (3) by use of a fictitious reference velocity
Ul’ defined by the equation

2
(4") U - = 1 -
1 w2 T;
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from whence it follows that

2
1

2 2
1 - U % (m)

1 -0
(4") o -

1I1.1.3 - Inward Shift of the Velocity and Density Profiles

The functions ¢(n) and 6(n), which have been defined
in the manner just indicated to represent approximately the
general behayior of the mixing processes, obviously do not obey
the exact governing equations of the flow.

In order to satisfy the criterion of over-all con-
servation of momentum, the following improvemehts may be intro-
duced. To do this it need merely be observed that one can
always shift the origin of the y axis at any particular abscissa
location in order to make the € and ¢ profiles obey the impqsed
conservation of momentum condition. To show how the shift in
axis is carfied out in precise detail the following notation and
procedures will be resorted to. Let BX represent the boundary
of the isobaric jet in inviscid flow which emanates from the
corner B after the turn is made at the corner producing the
associated Mach number Ml' ‘Likewise, let NN' denote a stream-
line in the external flow which is located at a sufficient
distance outboard of the boundary Bi, so that the flow there is
completely uniform and uninfluenced by the mixing, at least to
the second order of approximation in 6/YN\(See Fig. 3).

?#4 Yy
N N’

, o
: Figure 3
Inboard Shift of the Origin of the Velocity Profiles

in the Mixing Zone
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Now, the momentum computed at the control surface BN

-is expressible as

and this same amount of momentum must be accounted for at down-
stream locations, such as at the control surface CN'. Con-

sequently one must have

o i
S p(O,%)uz(O,gﬁ)dg(b - fp(x’,gg)uzqg,?)dy

(0] -~00

The left hand side is a known quantity, while the right hand side
may be recast in terms of the local velocity and density profiles
©(n) and 6(7), where in the present instance the local ordinates

are shifted downward by an amount yl(x), so that with
y = 2;+ ¥, (%)
y
and = = = .
n n ﬂp 5 ¢ ﬂp
then the new non-dimensionalized ordinate becomes

%g. + yl(x)
o —

n="
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Consequently, by imposing the condition that there
shall be conservation of momentum along the mixing region
boundary, the downward shift with respect to the boundary B%
that is required in the ordinates at each abscissa location is
determined (see Figure 3) by the relation

When the suggested substitutions and mathematical
manipulations are carried out, one finds finally, that, upon
passing to the limit er%>m, the downward shifts required for
preservation of momentum are given by the formula

Q

1 40
- 2 2 2
(5)n1-—npl<1-91<ol(g)>dg+{(1-em)dn-feco dn

where ©, and ¢, are the initial values of the density and velocity
profiles at station B (where % = 0) and where © and ¢ are given

by the expressions obtained previously as Eqs. (2) and (3), The
details of this derivation are recapitulated in the appendix.

I1.1.4 - Determination of Streamlines in the Mixing Zone

It is now possible to determine the streamline flow
pattern in the mixing zone. Before considering any arbitrary
streamline, it is worthwhile to fix attention on the particular
streamline which represents the jet boundary (j), passing through
the point J at the downstream abscissa location specified as X.
The desired relation for obtaining the downward shift for this
jet boundary is obtained by working with the fluid fluxes passing

the usual control surfaces. In the present case, if one focusses
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attention on the streamline NN' (across which no flux is carried)
and the control surfaces BN and JN' (see Figure 4), it must result

from continuity of the flow that

N N'

/o(O,Y) u(0,y) dy =f 0(%,y) ule,y) dy.
0 ) J

—
——— —
—_—
—

Figure 4

Orientation of Jet Boundary and
Arbitrary Streamlines in the Mixing Zone

Upon insertion of the now familiar non-dimensionalized
quantities 7, np, ¢, and, by taking account of the result presented

in Eq. (5), it may be shown, as is done in the appendix, that

5 1 i

(6) .jfefwdn = - np.)[ 8, v; (1 - wl)\dg +//f9 (1l - o) dn.

- (o] -0




Page 19

Consequently, this expression gives the value of the
successive downward shifts in the jet boundary because it
determines nj as a function of np (i.e., yj is determined, and,
in turn, the velocity and density are determined as functions

of x, inasmuch as uy = uy m(nj) and Py = P G(nj)).

In the case of an arbitrary streamline, the procedure
continues as follows., Associated with each arbitrary streamline
under discussion is a fluid flux, denoted by q', which is con-
tained within a channel formed by the streamlines passing through
J and Q'. Consequently a particular streamline of interest will
be characterized by a non-dimensionalized flux parameter expressed

as
a'- n e
P . . 0.
(7) —Q—IT]-.F_ J 6. - dn
"3

where y is the same shift (in ordinate obtained above in Eq. (6).
Thus, the location coordinate for the particular streamline (c)

: : . h S |
is obtainable as a function of the parameters np, 5 and Cq BIGIH.

IT1.2 - Application of the Escape Hypothesis to Some Simple Cases

I1.2,1 - The Angular Deflection Occasioned by Reattachment

The idea back of the escape hypothesis has been outlined
in the introduction. It is based upon the assumption that the
stagnation pressure obtained by an isentropic compression of the
fluid following the path of the discriminating streamline upstream
of the reattachment must be equal to the pressure Py which the
external inviscid fluid exhibits when it is subjected to an
angular deflection of ¥, to become aligned with the downstream
constraining wall after reattachment.
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Fixing attention on the flow along the discriminating
streamline it is convenient to designate the velocity there by
K = @(nL) while the density on this discriminating streamline is
clearly denoted by the analogous symbol e(né). Let M1 signify
as usual the Mach number of the external inviscid flow which is
attained after the turn at the corner B but before the reattach-
ment takes place. Based on these conventions it is then well
known that the stagnation pressure attained when such a flow
along the discriminating streamline is brought to rest is given

Piy _ 1
Py 1 - k° ul2

*

by the expression

y -— l

while the isentropic compression of the external inviscid flow,
starting in the state where the static pressure and velocity are
denoted by (pl, ul), and ending in the condition represented by

(p2, uz), is given by the relation
rd

pz 1 - u% 7-1

Py 1 - u12

Having set forth these explicit relations it follows
immediately by application of the escape hypothesis (whereby it
is stipulated that PiL

established between the velocities under examination:

= p,) that the following connection is
2

2

1l - u
1 -K2u =-———-——1-2
1l - u2

Ll )

*Some investigators maintain that this recompression takes place by
means of a shock wave, with the result that the turning exhibited

by the Y(Ml) curve during reattachment is reduced. The assumption
made here, "however, has the advantage of simplifying the subsequent

calculations and it doesn't seem to introduce any noticeable change
in the fundamental parameters influencing the flow,.
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or, what amounts to the same thing, K is given in terms of the
local Mach numbers as

2 2, .2

The recompression of the external inviscid flow from

flow at speed M, to flow at speed M2 may be determined by

1
relying on the pre-tabulated information given by the Prandtl-
Meyer law. This law is valid in the present case where a two-
dimensional plane flow is under examination. The Prandtl-Meyer

function is obtained by evaluation of the integral

P(M) = d/” 1V -1 + M M

Mg 7— M2

as has been pointed out in Reference 3. Consequently, the
angular deflection experienced by the dividing streamline upon
reattachment is obtained from the tables as a difference of

entries, where, specifically,
(9) ¥ = P(M,) - P(M)

Upon elimination of the common Mach number, M2’ from the
expressions now deduced as Eqs. (8) and (9), it follows that the
angular deviation suffered by the discriminating stream at reattach-

ment is

2
(10) ¥ = P(M; N1 - K7) - P(M;)
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where K represents the ratio w& = uL/ul. Of course, uL is the
velocity attained by the flow along the discriminating streamline,
while uy represents the velocity in the external inviscid flow
where the Mach number is Ml' It has already been noted in
Paragraph II.1 how the theory for the mixing processes permits
one, in theory, to determine the value of the velocity ratio K.

This ratio is a function, evidently, of the external
inviscid flow velocity, uys of the location of the discriminat{ng
streamline (1) (i.e., of the fluid flux parameter denoted by Cq),
and of the initial conditions present at the corner B which
characterize the formation and subsequent development of the
mixing zone; these initial conditions are designated most con-

veniently by the parameter wl(g).

I1.2.2 - The Basic Reference Flow

In order to illustrate the practical application of the
methods discussed above for obtaining the velocity profiles in
the mixing region and the angular deflection at reattachment,
the situation encountered in the case of the basic reference flow
configuration will be examined first. The basic reference flow
configuration, as mentioned earlier, is the case presented by an
approaching uniform two-dimensional plane flow which detaches from
the rearward facing step without the complicating presence of any
appreciable boundary layer at the corner. For this simplified
version of the flow detachment it was pointed out earlier that
the velocity distribution in the mixing region is given by the
expression

o (n) =% (1 + erf 1)

where n =90

Ml
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The formula for finding the downward shift of the
velocity profile ﬁj is found in the present instance by letting
M, = O in Eq. (6), from which it follows that

+oo

7.
J - —_ -

The equation for any arbitrary streamline in the mixing
region may then be found almost immediately by working with Eq.
(7) in which the simplification is made now that np - O
B X

In particular, the discriminating streamline (1),
represented by the parameter nL, will be linked directly to the
amount of fluid flux, q, that is either injected or sucked out
of the dead-water region. The location of the discriminating
streamline is thus dependent upon imposition of the requirement
that the mass of fluid in the dead-water region must remain
constant, which may be symbolized by writing q + q' = O.

If the flux coefficient is then defined by the relation

where q > 0 when blowing occurs
171 and q <0 when sucking occurs

then one obtains the location coordinate of the discriminating
stream from

e o

(7 - - [® .5 . an.
7.

n
©
J
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(a) Case of Reattachment when Neither Blowing Nor Sucking Takes
Place
In accordance with the dictates of Eq. (6) it is seen

that the value of ﬁj depends solely on the parameter u, (or on the

equivalent Mach number, Ml) provided one limits the di;cussion to
the particular case for which L = 1. In consequence of this
assumption, which amounts to saying that the limiting velocity
for the streamlines in the mixing zone has a common value (is

conserved), it follows that

Under these stipulated conditions, one may deduce, there-~
fore, that

K(ul) - B(ﬁj)

and then through appeal to Eq. (10) the corresponding value of the
angular deflection may be obtained, i.e., Y(Ml).

In what follows this value of Y(Ml) will be referred
to as the required angular deflection for reattachment which
applies in the case of the basic reference flow configuration.
The variation of the functions K(Ml) and Y(Ml) produced by a Mach
number spread from 2 to 4.5 is shown in Figure 5.
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Theoretical Results Applicable to the Reference
Flow, for which Yo = 1

/

,Riﬁﬁﬁ)
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Figure 5

Required Angular Deflection for Reattachment, ¥, and the Reduced
Velocity Factor, K, As Functions of the Upstream Mach Number, M1

(b) Case of Reattachment in Presence of Blowing or Sucking,
| When Cq # 0

The flow is now reexamined in the case where blowing
(Cq:>0) or sucking (C < 0) is taking place in the dead-water reglon:
In this instance the locatlon of the discriminating streamline is
determlned by evaluation of the non-dimensional ordinate n’ by
use of Eq. (7). The numerical computation of nL can only be
carried out, however, provided one is supplied with the values of
o and x/h.
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Now the mixing parameter ¢ has been studied in some
detail by Gbrtler (see Reference 3) and by other investigators
(see Reference 4). The results of these studies appear to indi-
cate the applicability of the following empirical formula for
evaluation of o:

o=12 + 2.76 Ml

In the choice of the value for x/h, on the contrary,
it will be necessary to fall back on stipulation of a supplementary
hypothesis. If the reattachment takes place within a reasonably
small distance from the stagnation point R, it should not be
greatly at variance with reality to admit, as Korst has suggested,
that

BR X 1 1

e

& TR sin ¥;  sin ¥

Unfortunately, experimental data [5] show unmistakably that the
reattachment zone extends over a rather significant portion of
the distance between B and R. Now, furthermore, Eq. (7) really
is not applicable in the present case because it applies only to
the constant-pressure portion of the mixing zone. Thus, the most
sensible procedure is to make the assumption that

A
av 5 -y
where kq is used to denote an empirical constant to be determined
by experiment. Once this constant is decided upon, then i& can
be obtained by having recourse to Eq. (7) and, in consequence, the
velocity ratio on the discriminating streamline is obtained as
K = E(ﬁt). In addition, the angular deviation, now denoted as
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Y(Ml,Cq), may be obtained by use of Eq. (10). Typical values
are given in Figure 6.

Theoretical Results Applicable to the Reference
Flow, for Which Vi =1

"J’: radigns )
a3 07'102:—0.10
0
+0.10 _
+0.25
+0.50
2 ' — i
oye, == ———— —
::::::7" *;:::j“*—-;:::j“‘**QE;‘\“
— Q\Q%
ais P———
+2.25
S .
0.1(/2 3 ", y
Figure 6

Required Angular Deflection for Reattachment, Showing the Effect of
' Blowing or Sucking :

I1.2.3 - Flows Differing Only Slightly from the Basic Reference
' Configuration
. The required angular deflection for reattachment‘depends,
in principle, solely upon the Mach_number,Ml,and upon the velocity
ratio at the discriminating streamline, K, according to the dictates
of Eq. (10). A flow which differs only slightly from the basic

reference flow configuration is now taken to mean a flow which is
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a linear perturbation from the reference flow. Thus, such a
"neighboring" flow is any one which has a Mach number Ml for the
external inviscid flow and which exhibits a perturbing factor
which operates to change the value of K by only a slight amount.
By a slight amount is meant any change in the value of K (to be
indicated by ©K) such that the ensuing effect exerted upon the
angular deflection at reattachment, ¥, will be amenable to
determination by linearization.

The perturbation in the required angular deflection may
be formally written in the following way, on the basis of Eq. (10):

BY = %%'. 6K

and, by introduction of the expression for P(M), it follows that
the sought expression for the angular deflection increment is

(12) | oy = KK . T\ B - E) -
1- k% 1+ 52w (k%)

If the particular type of perturbation under consideration
happens to be such that only the location parameter of the dis-
criminating streamline, nL, is involved, while nothing else enters
the picture to change the law that the velocity ratio u(n) obeys,
then one may write down an explicit relationship for the 56K, as a
function of 6n7. In fact the relation which is pertinent is just

-2
-n. - :
(13) 6K = —— e J . By
n

This case is exemplified by situations in which only a light blowing
or sucking in the deadwater region is acting to perturb the flow,

or if only a slight modification in the temperature is exerting its
influence on the flow.
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Application I - Case of Slight Blowing or Sucking

Upon taking the requirements of Eq. (11) into account,
it is found by reference to Eq. (7) that the separation between
the jet boundary and the discriminating streamline is given by
the relation

- - in ¥
bn =1, -7 -__.q_._s____..C

4 J A ™
where $J = K

o .
l -1 : -]
and 6, = 1 -|:1 + L= 1 42 . Kzz\
J 2 2 1
1 .

1-% u

Furthermore, the increment in the angular deflection B5Y is determined
by recourse to Eqs. (12) and (13), which turns out to expressible,
thus, as

oY = - yt . & sin ¥ o

xq q

-2 2 =2
wherein ¥' = _l_ - e -nj -\//M; a - Kz) - }
v 1-X

This relationship for the increment in the angular deflection
is shown in Figure 7 for two possible values of the mixing
parameter, ¢o.
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8¥,
6Cq
Figure 7 -15 ////
a:=124 2,758 M— :
Increment in the Required Angular
Deflection for Reattachment, Due to a P _

Slight Amount of Blowing, for Two -10

Different Kinds of Mixing Coefficient ,/’{j////,
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’///’
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4

Application I' - Momentum Additions |
In the preceding case it has been tacitly assumed that

the blowing (Cq> 0) or the sucking (Cq< 0) has been accomplished

at very slow velocities, so that there is no need to take into

account any transfer of momentum.

In the present instance, on the contrary, the case is.
to be examined in which an amount of momentum, denoted by J, is
: imparted to the flow in the absence of any mass transfer. The
momentum is assumed to be transported across the base region
(x = 0) confined to that portion for which y <0, and is trans-

mitted in a direction parallel to the Bx boundgry.
Returning to considerations entirely analogous to those

encountered in Section I1I.1.3, it is clear that if the conservation

of momentum is premised, then one may write in this case that

x = 0 station (x) station
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If a momentum transport coefficient is now defined to have the

form C = ——E;%r—, it is easy to see that one needs to add the
 ppuph
term-% % Cu to the right hand side of each of the expressions

obtained previously as Eqs. (5) and (6). It is then found that
the equation which defines the inward shift of the velocity
profiles, nj, may be written in the form

nj +°°v

- | gh
fe-co-dn f;m(l ®) dy + 5 3 C
-0 -0

where all other perturbations are being disregarded, so that
np = 0. When this result is compared to the analogous expression

obtained for the basic reference flow configuration, it is apparent
that

- g h 1
. - . = . = - C  ——,

81

Having elicited this result for the streamline shift, it follows
that the incremental change brought about in the value of the dis-

criminating streamline velocity parameter, K, is given by the
formula ‘

86K = —_ . do  gsiny¥ .

1
5 9 Xq 2
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and, similarly, the incremental change in the required angular
deflection occasioned by the introduction of the momentum is
represented by

(15) By = y' . o Ssin ¥ % .
In the case where there is both injection of fluid

(Cq>»0) as well as transport of momentum (Cu:>0), the formula
given above as Eq. (14) should be altered to read

' = v O Sih ¥ sin ¥ _].'. -
(14") BY = ¥'. » (2Cu cq).

NOTE:

In the event that the transport of momentum and of fluid
takes place at a constant velocity Vj, then in this particular case
it is permissible to write

and the incremental required angular deflection is determined by
the expression

. A"
6y = - y, O Sin ¥ . ¢ 1 - 4 .
Xq q

Inasmuch as Cq is itself proportional to Vj, it is evident from
the above formula, then, that the effect on 6Y of a combined
momentum and fluid injection which takes place at a progressively
increasing rate will eventually arrive at a maximum amount of

deflection, which will then decrease thereafter, as is confirmed
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by experiment. If, furthermore, the density Py at the injection
is maintained constant, then the maximum deflection is attained
when Vj = u1/2.

Application II - Alteration in Temperature Level of the Fluid in
the Dead-Water Region

In this example it is assumed that the enthalpy of the
fluid in the dead-water region is regulated by some device so that
L 1 + 6wm. Within the framework of the hypotheses that have
been agreed upon it is evident that such an enthalpy perturbation
will not have any effect on p, but it will only influence the
value of 8. Now it has been shown above in a formal manner that

© does not change its mathematical expression when the real velocity
2 2

o Uy + Vi 1
uy is replaced by the fictitious velocity U1 = 5 .
w
m

Consequently, Eq. (6), which is the expression arrived
at previously for the jet boundary location will now provide the
sought value of ny as ﬁj (Ul)here, instead of'ﬁj(ul). Furthermore,
the velocity ratio on the discriminating streamline will be found,
then, as

K = 'cE('qj) = K(U;).

Besides, the imposition of the "escape'" hypothesis, in this case
where the limit velocity of the flow is no longer unity but is

now taken to be given by w2 + K2 1 - wi), leads to an alteration
in the result given in Section II1.2.1 for the isentropic stagnation
pressure for the discriminating streamline. Under present stipu-

lations this pressure is obtained from the formula

b e rd
P, w2 (1 - k%) + K2 =1 [ _ w2\ 71
il m - 2
' 2 2\ 2 2 2 2 *
P1 L (1 - K°) + K°-XK uy 1 - uy
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and one regains a result for the downstream Mach number, M2, which
is formally the same as the relation arrived at earlier as Eq. (8),
except that in the present instance K must be replaced by Kl’ i.e.,

f 2 2 1
1

T D1 2
K° + wm(l K

)
(8") ;

M22=- Q1 —Klz) Mlz.

In summary, it has been shown that if the limit velocity
of the flow in the dead-water region is envisioned as linked to
the 1limit velocity of the mixing zone (i.e., this limit velocity
is the one attainable by expanding down to vacuum pressure the
flow in the mixing zone) then this new incremental value for the
limit velocity of the flow in the dead-water region implies that
the following alterations must be incorporated into the calculation
of the required angular deflection, V¥:

1. The value of K is obtained from Fig. 5 by entering the

. 2 2 .
curve with the value U, \V/ul + W - l/wm in place of

u;. Thus, one finds that K = K + 5,K.

2, The required angular deflection at reattachment is
calculated by having recourse to Eq. 10, wherein K
is replaced by the new expression obtained from
Eq. (8'). This amounts to introduction of a second

correction applied to K, which may be designated as

62K.

Provided the value of Y is not significantly different
from unity, so that L 1 +56 L with b W small, then it is

found that
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1 112 —

5K =20%w, - u > gﬁ
1 1

and ' 5,K = - 5w K (1 - iz)
2 m ‘

Thus, one may then legitimately employ the differential expression

N L . dyY
6Yw 6wm Kw

=Y

. 1 - u ¢ —
v ' o 1 . dK - o "'2
where KW w0 dul K (1 - K%).

Thé value of 9% is given as before by Eq. (12); while the co-
dK

efficient K& is depicted graphically in Figure 8.

Theoretical Results Applicable to the Reference
Flow, for Which wm = 1
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Figure 8

Effect on the Reattachment Flow of Alteration in the
Temperature Level of the Fluid in the Deadwater Region
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Numerical Example:
For purposes of numerical illustration let the following
specific case be examined. The stagnation temperature in the

exterior inviscid flow is taken to be Ti = 300°K, while the
1
temperature of the dead-water region is kept at the value Tm = 270°.

Thus, gw_ = - 390 = 270 _ _ ¢ o5,

m 2 x 300
Let the Mach number of the flow after turning the corner be taken
as M1 = 2,63. Then the value of u2 is 0.584, and it follows

1
immediately that

dy dK

K -— 0.663, — = 1.13, and a—'— = 0.18.
dK g
Consequently,K! = (0'436;é2'18) - (0.663)(0.56) = 0.098 - 0.371 = -0.273

and 6Yw = (0,05)(0.273)(1.13) = 4+ 0.0154 radian

from which the required angular deviation at reattachment may be
deduced to be ¥ = 0.29,

It is evident from this example that the first increment,
61K, is relatively small in comparison with the second one, 62K.
It is also evident that a quite moderate shift in the temperature
at which the mixing occurs results in increments in the required
angular deviation at reattachment, ¥, which are not at all

ignorable according to the graph of Figure 8.

The influence exerted upon such separated flows of the
presence of an appreciable boundary layer will be treated next.
This sort of flow condition will also be illustrated with a

numerical application later on.
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11.3 - Effect on Reattachment of the Presence of a Boundary Layer

In any real flow there always will exist a boundary
layer lying next to the wall that is confining the flow. For
present purposes the nature of this boundary layer will be
specified by selecting the velocity profile and the temperature
profilé which is achieved in the development of the boundary
layer just as it reaches the shoulder B immediately before

separation occurs. These profiles may be designated symbolically
as

T . / ;
u' yv\ o yv

_— = -—r‘and————'——r=el—r)

u, o.b%") fo T o \6
where 5' represents the real physical thickness of the boundary
layer; i.e., it is granted that 0, = 1 and eo = 1 for all yyo'.
Of course, as usual, the symbols Mo, u s and To represent the
Mach number, the velocity, and the temperature, respectively, of

the inviscid flow encountered at the shoulder B (see Figure 9).

Figure 9

Boundary Layer Flow Pattern for Rapid Expansion at Corner:
Two-Dimensional (Plane) Case
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As the flow passes the corner B it undergoes a very
rapid expansion (which occurs instantly at the point B itself,
in the absence of any boundary layer). This expansion transforms
the exterior inviscid flow from the conditions (Mo’ po) into a
new set of conditions (Ml,pl). In order to progress in the study
of the detachment and reattachment processes it is necessary, first
of all, to find out how such an expansion reacts on the boundary
layer. After determining the effect on the boundary layer itself,
then, in turn, one can proceed to determine what perturbations
are induced by the boundary layer upon the nature of the velocity
and temperature profiles to be encountered in the mixing zone

just before reattachment.

IT .3.1 - Effect of a Rapid Expansion upon the Boundary Layer
Development
The analytic expression for the expansion taking place at
the shoulder B can best be denoted by use of the pressure ratio
pl/po. Inasmuch as this expansion process is an isentropic one
in the exterior inviscid flow, the representative pressure ratio
is connected with the other pertinent flow parameters by the

following set of relations:

y -1 .2 r—-
1 + > M1 _ To _ ao _ P, y A
1 .2 T a .
1 + L= M 1 1 Py

After the expansion takes place, the inviscid external

flow attains a new Mach number, denoted by M and it assumes the

1’
direction of the line BY, which is determined by the well-known
Prandtl-Meyer relation for deflection of a supersonic flow through

an expansion.
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Keeping in mind these characteristics of the external
inviscid flow, it is reasonable to expect that the boundary
layer will obey the following rules as it undergoes the expansion
at the shoulder B:

A. - For a very short distance downstream of the shoulder B, of
the order of magnitude of 5', one will find that the
velocity vectors lying along every streamline throughout
a normal section Oy will be aligned in the same direction,
which will be the direction of BY, and that the static

pressure will be constant there and equal to Py -

B. - If Q' and Q are used to denote two points lying on the
same streamline and so situated that one lies upstream of
the expansion; i.e., so that the first (Q') lies on the
ordinate axis By' and the second (Q) lies on the rotated
axis Oy, then the total enthalpy and the entropy are con-
served while the flow passes from Q' to Q. As thus described,

the points Q' and Q are said to be homologous points.

This hypothesis is equivalent to acceptance of the
fact that when the flow passes from Q' to Q it undergoes
a quasi-discontinuous change in which the effects of the
pressures are infinitely greater in importance than the

effects of viscosity or thermal diffusion.

Having made these stipulations A and B it is easy to see
what their immediate consequences are as far as linking the flow
parameters which hold upstream and downstream of the expansion.
Let the upstream parameters be denoted by primes, so that at the
homologous point Q' to Q the quantities of interest are y', u’',

a', and T' (while at Q@ itself the corresponding quantities are
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denoted simply by y, u, a, and T), and also take it for granted
that the limit velocity to which the flow can be expanded is to
be denoted by unity. Having agreed upon these conventions, it
then follows that

a2

L
(2) —%— - -

a T
. d 2 a2 = w2 112 2 212 = ]
(3)¢
2 2 2 2 2 2 2
| \ = . . =
("™ + > =T (a') wEoug e o 0 A 1

Upon looking back at Eq. (1) and taking into account
Eq. (2) it becomes clear that

. To T1
€)) eo(y ) = i 6, (y).

T

Hence, at any two homologous points, such as Q' and Q, the density

function © exhibits the same value.

A simple manipulation of the equations given above
results in the establishment of the following connection between
” ' .
vy (y) and o (y'):

(5) v, (y) =
2
1 1 +0
A -1 M2
2 _ _M 1
where ® - 2 T2 T
u M
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It remains to establish a point-to-point correspondence
between the ordinate values (y,y') of homologous locations. This
correspondence in position may be obtained by falling back on the
continuity theorem, which requires that

pudy = p' u' dy'
so that, it follows, one must take

T+l
2(y-1)
dy = A

®

o)
2 2 o2
V/wo +wo )

dy'.

For convenience sake, let the following notation be
introduced

=Y A
C 5 and ¢ 57

(6) ~

gl
v, d¢'
and  Z(¢') = o %
L- 2 + w2192
o %o
then it follows that
r
Z(c')
¢ = =5
Z(1)
(7) n
-1
5 2(y-1)
and-6—r=Z(1)°A
.

and it may be seen, in addition, that



Page 42

r+1
20-1) w Sy
t TR Euy

where the function > (M) is used to denote the area ratio A/Ao,
where A is the cross-sectioned area of a stream-tube, and where
the area ratio in question is the one obtained by an isentropic
expansion resulting in the Mach number M.

Let the special case now be examined in which the limit
velocity w attains the value unity. That is to say, let attention
be focused on the special case for which

1l - uf l - uf
e,(¢') = 5 — =
1 -ujo, (") 1 - u1 wl (¢)

The integral given for evaluating Z in Eq. (6) of Section 1I.3.1
may thus be simplified to

¢’ .
9,(¢") dg'
Z(¢') = 2 :
\]@ 2 +w2
(o) (o]

The corresponding momentum thicknesses which pertain to
the flow upstream and downstream of the expansion may then be
evaluated from the expressions

o5 (1 1-ug
6_ ——_—u—z———gcoo(l-coo)dc
o %
5, 1'“:21
an '6_' _zzml(l"ml)dc
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It may be remarked that the following alternate expres-
sions hold for the terms appearing in the above expressions for
the momentum thicknesses:

2
l -u _ 1l - u1
2 2
l ~-nu o l—ul ®y
co .
1 o %o 1l 1
d = d ', . == d 1 — .
¢ S 4¢3 2 2 ¢ ©; Z(D 2
4 + ©, 1 +@
> M) M
and O - 1.1, Z(1)
S (MOS M, :

Consequently, it follows that the momentum thickness ratio
is given by

1
J[wo(l ®y) ac’
oy M) 1 - u, 0f
5 T M) 1
]coo(l -zcooz) ac
. 1 - u’ o

where the shorthand notation has been used that

wf (c') + 4 2
140 %

v, (¢') =




Page 44

When the expansion is of only moderate degree it is
readily appreciated that the right hand side of the expression
for the momentum thickness ratio will not differ greatly from the
function g:"(M )/‘:(M ). Consequently, the quotient of the two

integrals Wthh mu1t1p1y'§_(M )/EL(M ) may be treated as a cor-

rection factor, designated as A. The way this correction factor,

A, behaves as a function of the expansion, represented by &A, is
shown graphlcally in Figure 10.
A (S 2 WQ) R
s, x(M) Theoretical Results
N ne7 =3
W\
9 “::’(\
\\\‘\ ——Mo,=25
NN
8 l ‘\‘\ =3
My2 N {/"
. \\\
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M2l 5 J \
0.6 \
05 N
0.4 \\
\ i
l o
a30&,n 05 0 (n=5) a5 15
_ Figure 10

The. Correction Factor, A, As Function of the Degree of Expansion, {c .

1I1.3.2 - Determinﬁtion of the Conditions at Reattachment
The calculation of the conditions at reattachment may

be accomplished by going back and reca111ng some of the results

already obtained in the preceding sections. The velocity profile

in the mixing zone is given by Eq. (2), found in Section II. 1 O
in the form

= CDL’ ﬂp: Cﬂl(c‘)-
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It has already been indicated how one obtains the initial
velocity profile denoted by ml(g). The parameter np is the quantity
which governs the effect on the velocity profile of the presence
of the boundary layer, where

0, = —20
P x £(x/5)

It is not necessary to pay any attention here to any
other condition than that pertaining to the limiting value of
f (x/5), which is unity, which is for all practical purposes the
value obtained when x/% is sufficiently large.

Although the streamwise location, x, which is to be used
to represent the distance corresponding to the reattachment point
is not really known beforehand, nevertheless it is a practical
procedure to make the selection, as was done in Section 1I1.2.2,
that

from which it follows that

-2 .0 g

(8) U . B sin ¥

where xa is a numerical constant to be determined from experiment.
This numerical constant is the proportional part of the distance
from B to R which represents the fictitious length along which

constant pressure mixing has occurred.
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The downward shift in the jet boundary as represented
by the quantity nj may be determined by referring back to Eq. (6)
of Section II.1.4. After obtaining 7. it is then a simple matter
to evaluate K = m(nj) by use of Eq. (2) of Section II.1.0. On
the basis of this velocity ratio one may then go on to obtain
the value of the required angular deflection at reattachment, v,
by means of Eq. (10) of Section II.1l.1.

These outlined steps in the calculation may be carried
through in a straightforward way but at the expense of considerable
computational labor. The whole process may be considerably simpli-
fied, however, if one merely linearizes the equations.

With this object in mind, one may now premise that every
quantity of order npz may be neglected, and taking the basic
reference flow configuration, represented by GE(n),ﬁj), as the
norm from which perturbational variations are considered to start,
it may be stated that

oM =oM +1_ - o +<9'(np2)

p

and n, =7n. +1n_. - 1n'.

Upon differentiation with respect to np of the expressions
for the velocity ratio ¢, as given in Eq, (2) of Section I1I1.1.2,
and of the expression for the streamline locations as given in
" Eq. (8) of Section I1.1.4, the following pertinent differential
equations are obtained (when evaluation is made for the specific
case of Ehe basic reference configuration, for which "j = ﬁj and
E(nj) = K). The details are given in Appendix 1, but the significant

results are that
-2

-n. B o _
CD' = € J . 11 = e .__1___.1 . (.d_c2>
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dn. °1. 5, 1 - uZg?
and T,' = d = __1 _ _2 1
dnp 3] o] K(1 - u{Z)
1
611 f
where —g—'= [} - wl(g) dC
(o]
1 1
and 2 _ 0“_1-Ld=je (1 - o,)dc
VTR Gy A A
(o] O

where the 61 and 62 are the conventional boundary layer thicknesses
i
of the approaching flow.

From these differential coefficients it follows that the

increment in ¢ is given by

ds |
) - o(m.) = 8K = "+ 5=
m(nJ) w(nJ) T [% | dHJ

2

2 =2 -7

62 1 - uy K e J

Referring back to the expression obtained as Eq. (12)
of Section II.2.3 for the increment in the required deflection,
5Y, one now obtains a value which applies in the present case,

when a boundary layer is perturbing the flow, which has the form

~ o) o) .
= 2\ _ - yr . _2 ., osin ¥
oy Y <M1, H—> Y(Ml) ¥ " —)\—g—_
(9) < ' —
1 -ﬂ? \/Mf (1 - Kz) -1
where ¥' =-_—~¢ Y — .
. \‘ ™ 1l - K2
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Upon comparing this expression with the one presented as
Eq. (14) in Section 1I.2.3 a very remarkable theoretical observa-

tion comes to light, namely, that

with the mere restriction that the ratio xa/x must not equal
unity. The interpretation of this result is the following: If
the boundary layer in the approaching flow is characterized by

a momentum thickness designated by 62, then the effect of this
boundary layer on the required angular deflection at reattachment
is exactly equivalent to the effect of a mass injection by blowing

into the dead-water region of amount q = py U O

1 72°

IT.4 - Comparison with Experiment

IT1.4.1 - The Experimental Set-Up
The flow arrangement used in the experiments is repre-
sented schematically in Figure 11, while a more detailed descrip-~

tion of the apparatus is fully described in Reference 5.

Sliding members, as shown, were able to be positioned
along the dividing wall of a half-tunnel in which the Mach number
could be selected as 2 or 3 depending on the nozzle block. With
such a set-up, utilizing wedges which were movable and which were
constructed with a series of different wedge angles, it was possible
to change the reattachment angle of the downstream wall, wz, to
fit the experimenter's preference. Since the wedge is moveable,
the effective height, h, of the backward facing step is also

variable at the experimenter's will (see Figure 11).
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. Mach number, Mo’

fixed at a value of
either 2.0 or 250

' ==>
y& Sliding Ramp

R ARSI R
-
Pde S . 4" S S S

Wedge angle, wz, is adjustable over range
0° to 17°. ‘ '
Figure 11

Schematic of Experimental Set-Up for Studying Reattachment Phenomena
in Two-Dimensional (Plane) Flow :

Inasmuch as the experimentally realizable values of
M0 and wz provided by the physical apparatus were confined
within moderate limits ‘of variation, it turns out that the »
obtainable values of the inviscid flow Mach number, Ml’ downstream

of the corner, lie within the range of 2 to 4.25,

‘ For each of the geometric configurations examined, the
effects of blowing and sucking were observed by varying the
amount of fluid flux introduced into the dead-water region. The
effects produced by having different thicknesses of the boundary
layer approaching the rearward facing step were studied, mean-
while, merely in a restricted number of typical cases. The
variation in the ratio of the boundary layer thickness af the
shoulder B with respect to the effective height of the rearward
facing step, 62/h, was actually obtained by variation of the step-
height through fore- and aft-movement of the sliding wedge.
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I1.4.2 - Effects of Fluid Injection into the Dead-Water Region

The primary objective of the investigation being reported
here was study of the reattachment behavior of the separated flow,
as affected by relatively weak values of the injected flux parameter,
Cq. By keeping the value of this parameter under 0.02, the momentum
transported from the secondary stream as it is injected into the
dead-water region is practically inconsequential, so that this
situation corresponds closely to the stipulations imposed by the
theory developed above.

Reduction of the experimental data obtained during the
course of the experiments which covered the range of parameters
mentioned in the preceding Section II1.4.1 has permitted the construc-
tion of the family of very significant curves, relating the re-
attachment angle {§ to the flux parameter Cq, as represented in
Figures 12 and 13. 1In all, data have been obtained for six discrete
Mach numbers, Ml’ ranging from 2.15 to 3.70. Within the range of
conditions met during these experiments the corresponding values
of the ratio of the boundary layer thickness at the shoulder B to
the backward facing step height, 62/h, varied over the range from
0.014 to 0.021.
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For purposes of comparison the theoretical data are
plotted on the same diagrams to show the results of applying the
method expounded in Section II.2.2, wherein the empirical constant

xq has been assigned the value unity.

Upon closer scrutiny of these results it may be seen
that the effect of blowing on the reattachment angle is quite well
predicted, in general, by the theoretical calculation, even though
the supposition is being made in this particular theory that the
boundary layer is negligible. The experimental points do not fall
off the theoretical curves by much, nor do they deviate hardly at
all from the shifted theoretical curves which are obtained from
the ones shown by making the values at the origin coincide and then
applying this AY incremental value to other points at appreciable
values of Cq.

It is worth noting as a general principle that when the
Mach number increases the effects on the reattachment angle are

considerably accentuated. Furthermore, it may be observed that
avy

’qu’

reduced, which is when C has grown large, then this condition

when the local slopes of the curves become significantly

constitutes a flow regime which is no longer legitimately covered
by the linearization assumption, with consequent restriction in the

universality of the application of this approximation.

It may be affirmed, likewise, from this comparison of

theory and experiment that the initial slopes (%%—> of the
cC =0

q

experimental curves are in general substantially smaller than
those predicted by the theory. This deviation from the expected

behavior may be attributed mainly to the presence of an appreciable
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boundary layer in the physical experiment, as will be more clearly
brought out in subsequent discussion of this phase of the research
on the reattachment problem,

I1.4.3 - Effect of the Boundary Layer and Comparison with the
Effect Produced by Secondary Injection

In the experimental set-up selected for test the two
Mach numbers downstream and upstream of the corner expansion, M1
and Mo’ are practically the same, and they had the common value
3.0. Consequently, hardly any perturbation to the external
inviscid flow was in operation to alter in any appreciable way
the flow near the shoulder B of the rearward facing step (see
Figure 11). Furthermore, under these conditions it is possible
to determine the character of the boundary layer in the approaching

flow by direct experimental probing of the velocity profiles.

Furthermore, in this arrangement where the pressures
upstream and downstream of the shoulder B are kept equal, there
is very little tendency for any disturbing side-wall boundary
layer effects of any significance to intrude into the picture
[;ee Reference 5|. Consequently, this elimination of disturbing

factors gives these particular experiments a very desirable purity.

In Figure 14 are presented, first of all, the theo-
retical curve for the reattachment angle as effected by blowing,

o]
Y<éq = 0, 7% = 0> but without a boundary layer, and the cor-

responding graph showing the effect of the boundary layer, but
o]
2

without blowing, V¥ Cq = 0, Tf)' In the first place it may be

affirmed from the evident closeness of these curves that the

effect on the reattachment angle is nearly the same whether
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produced by blowing or the boundary layer, provided the empirical
shifting factors XS and Xq are equal. This close correspondence
of the roles played by the blowing and by the boundary layer thus
extends to a wider range of usefullness the rather remarkable
property which was noted to hold true in mathematical rigor, in
Section II.3.3, only for a small amount of blowing and for a

thin boundary layer, i.e., for conditions only slightly removed

from the basic reference flow configuration.

Consequently, it is now permissible to express the re-
quired angular deflection occurring at reattachment in the following
manner

b 6
2 2

where the f function can serve to represent either the effect of
blowing or the effect of the boundary layer, interchangeably,
and where the fi function is an adjustment term which indicates
the interference effect of the two variables on the reattachment

angle when operating simultaneously.

The above-mentioned behavior of the computed results
may now be used to good advantage in explaining the experimental
results which also have been plotted in Figure 14. The experi-

mental data fall into three groups. There is a single piece of

%2

curve, Y 5 Cq = 0, which represents the boundary layer effects
for no blowing, while there are two groups of data of the form

o}
Y(Cq, 7? = const.), which show the blowing effects at two dif-

ferent values for the boundary layer thickness (the open and
closed circles in Figure 14).
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Effect of Blowing and of the Boundary Layer Size on Reattach-
ment Angle -~ Comparison with Experiment at M1‘=-3.0
First of all the observation may be made that the effecf

of the secondgry fluid injection_on the reattachment angle Y(Cq)
is clear and unmistakable, particularly in the neighborhood of
the origin; i.e., for flux parameters Cq510.006. When the
theoretical curve (still being considered as a function of the
secondary fluid injection parameter) is compared with the experi-

mental data (open circles) it is obvious that the slope g%—

_ : q '
- observed from experiment is less than that predicted theoretically

% ~ 0.017, while

. 5, h
for thin effective boundary layers for which 7? = 0,008, the

for values of the boundary layer thickness near

slopes of the theoretical and experimental curves turn out to be

quite closély the same.

Such progressive shifts in the level of the experimental

23 8
0 2
= f;<C ,—fj

i h
qi_ .

data may be interpreted as governed by the derivative‘aC

of the adjustment term, which accounts‘for\the interference effect

between fhe two variables, as represented in Eg. (1) of this
section.
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The practical usefulness of knowing the value of this
derivative can, as well, be appreciated by noting its effect in
causing the divergence between the experimental and theoretical

results presented in Figures 12 and 13.

This information has valuable utility in establishing
a working rule which will be valid within engineering accuracy.
The function f(Cq) which represents the effect of secondary fluid
injection on the attachment angle evidently serves very well to
stand for the real variation of ¥ with appreciable amounts of
blowing, up to as intense a rate as that indicated by Cq = 0,02,
even though a fairly sizeable value of the ratio of boundary
layer to step height is allowed to come into play. This con-
venient representation of the true state of affairs would appear
to imply that, in first approximation, the interference adjustment

term fi Cq,EE must be relatively insignificant in comparison

h
with the main governing function f£.

In addition, it is easy to see in Figure 14 that there
is a shift, AY¥, in the ordinate intercepts, between the two curves
representing the two different values of the boundary layer thick-
ness ratio, 62/h, used in the experiments. This shift logically
can be attributed to the corresponding shift in the attachment
angle produced by influenceaof the boundary layer, according to a
law also represented by f T? , as indicated in Eq. 1 immediately
above,

The experimental investigation of the boundary layer
5
effect on the reattachment angle to determine ¥ = f(—ﬁz—> was

carried out for only a limited range of the variable %%, and,
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unfortunately, the beginning of the interval was fairly far re-
moved from the origin, because, with the particular experimental
set-up available for these tests, it was not possible to reduce
the 62/h ratio to any value smaller than 0.008.

Within the restrictions imposed by this narrow range
of the variable that was investigated, it may be noted above all
else that the sizeable displacement which is exhibited between
the experimental and theoretical curves can, nevertheless, be
accounted for by a simple vertical translation, represented by
a correction factor AY¥. If such a translation were to be carried
out on an analytic basis it would appear reasonable to try first
of all to extrapolate the relatively short range of experimental

data actually covered, in order to obtain an experimental value

of the intercept, i.e., to obtain ¥ 2? = O), where 2% = 0 is

the ordinate axis. The theoretical function which was obtained
for relating the deflection angle at reattachment to the boundary
layer thickness ratio would now be brought into play in trying

to produce an '"adjusted" curve going through the so-determined
experimental intercept and shifted this same constant amount for
all points along the 62/h axis, Unfortunately, the intercept
value for the experimental points found by such an extrapolation,

¥, is exceedingly far above the intercept value given by theory.

Although this result is only established on the basis
of relatively few data it seems to be supported by additional
evidence, inasmuch as the intercept values ¥/ C = O )which were
found in Figures 12 and 13 for the case of large values of 62/h
were just slightly above the theoretical values of ¥ for
M1>2.35.
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It appears inescapable, therefore that the expression
deduced as Eq. (8) in Section 1I.2.1 for the required angular
deviation for reattachment should be reconsidered. With this end
in mind it seems imperative to carry out new experimental studies
also, in which much reduced values of the variable 62/h can be
obtained. The experimental set-up should also be redesigned so
as to eliminate, insofar as is possible, the three-dimensional
disturbances originating from the boundary layers which grow up
along the side walls.

III. Effect of Certain Curvature Factors on Reattachment
ITI.1 - Theoretical Approach to the Problem

ITIT.1.1 - Essential Features of the Proposed Method
So far in the discussion the required angular deflection
at reattachment has been found to have the following form

Oy
Yy = ¥ (Ml, Cq’ _h‘: Wm>

but the specific functional relationships which have been deduced
have all hinged on the supposition that the flow after the

corner expansion, represented by the Mach number Ml’ is rigorously
uniform, two-dimensional, and isobaric along the mixing region.

It is the object of this part of the paper to extend the region

of validity of this relationship in order to encompass those cases
where certain curvature factors enter into the picture to alter
the contour of the jet-like flow.

The method of characteristics is available for the study
of the expansion processes taking place in the external inviscid

flow as it passes the point B. This well-known method may be used
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to find the initial curvature X1 of the jet boundary as a function
of the several curvature factors which could come into play to up-
set the otherwise ordered flow downstream of the jet base. These
relationships which apply only rigorously for a two-dimensional
plane flow can continue to be used for all practical purposes when
the configuration is actually a body of revolution. The initial
curvature after the expansion, Xl, may be considered, thus, as

the primary parameter representing the distortion of the jet-like
flow from the fundamental reference configuration. If this initial
curvature remains constant, then the angle of the flow, ¥, at

any selected downstream position from B, having an abscissa denoted
by x, will be proportional to this distance; i.e.,

b o= wl + X Xl.

In the more general case where the curvature X, varies

1
as one progresses down the jet, the local flow angle may be expressed

as
b=y +r - x - X

where ) will be a function of x in general, so that the degree of
its deviation from unity will indicate the degree of variation of
the local curvature from the nominal value Xl'

Let ¢2 be the angle, measured with respect to the direc-
tion of the approaching undisturbed reference flow, that the
reattached flow takes finally, and let h represent the height of
the rearward facing step at detachment, so that the following
sketch can serve to represent the elements of the flow configuration
under study:
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Although the effects of curvature factors on the re-
attachment may be complicated, it is best to proceed with an
approximation anaiysis based on the a priori assumption that the
behavior of th? flow can be expressed in the form

: h cos ¢2
= ! - ! - . ————————atta———— .
h cos wz
where the quantity Sin v in this expression is approximately
in

equal to the length of jet boundary from B to R. Note that X1

is > 0 if the curvature of the BR boundary is concave upward.

_ It is being tacitly premised in writing Eq. (1) in the
form given above that the perturbations produced in the flow are
acting aloﬁg the entire length of the BR boundary. If this is not
so, then at least the x distance along which the curvature effect
is noticeable will be less.than BR, and this length should be
introduced in place of the term h cos ¥g/sin ¥. '

It will be demonstrated by supporting experimental
results that a curvature influence function f\(Ml)(exists, such
that Eq. (1) allows one to compute, to good approximation, what

the reattachment conditions will be in a great variety of caSes.
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, Before launching into a general frontal attack to solve
this problem, let attention be directed first to the following
simple particular experimental situation which will throw a good

deal of light on the subject under examination (see Fig. 15).

7 /

7
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Figure 15

Diagram Showing How Curvature Affects Reattachment, in Two-Dimensional

(Plane) Flow. Concept Is General, Despite Wedge Illustration.

. Consider a two—dimensional wind~tunnel which produces a uniform flow

at a Mach number of Mo upstream of the shoulder B. Furthermore,

nothing further intervenes, the flow downstream of B should follow

the standard path of detachment and reattachment in such fashion as .

to represent the fundamental reference flow, where the pfesence

here of any boundary layer is being ignored. If one now introduces

into the flow, at a point such as A, a flat plate airfoil (with
leading edge at A) which can be rotated to produce various negative
incidence angles, ¢, at will, then this plate at various settings

will act to produce an expansion ane, downstream from B, which will

play the role of a curvature factor in influencing the jet path
contour,
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The pertinent theoretical analysis for this situation
is very elementary. If one considers first of all the case where
the angular settings of the flat plate are only slightly inclined
to the on-coming flow, then the entire expansion wave emanating
from A will be reflected from the jet boundary, as shown in
Figure 15. From the method of characteristics it will be seen
at once that the angular induced deviation of the jet-like boundary
is 2¢, if this boundary is considered to be an isobaric limiting
line. Consequently, the angular direction at reattachment, ¥, is
given by the following expression (for the special case where ¢2
has been taken to be zero):

¥Y(M) = P(M)) - P(M) - 2

On basis of this result it may be seen that M1 is a
function of ¢, if the upstream undisturbed Mach number is assumed

fixed in value.

As € grows larger and larger (as the flat plate is
rotated more and more from the zero position) the inviscid flow
Mach number, Ml’ increases, and thus the static pressure 12
decreases. At the same time the stagnation point R moves upstream,
while, conversely, the expansion fan spreads farther and farther
downstream. Consequently, it turns out that a limiting incidence
angle for the flat plate will be reached, after which no further
change in the curvature effects should be noticeable. If it is
imagined that the mixing zone along the jet-like boundary is very
thin and if the region of reattachment is narrowed down to the
point R, thenAit is clear that the first attainment of the limiting
incidence angle mentioned above corresponds to the spreading of
the last ray of the expansion fan from A just far enough downstream
to first intersect the point R at this farthest downstream point
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of the jet-like boundary. The flow pattern for such an idealized

'situation can be determined by the method of characteristics.

An encouragingly close comparison between theory and
experimental results is presented in Figure 16. The theoretical
curve in this plot has been obtained under the simplifyihg hypothesis
that the required angular deflection at reattachment, ?(Ml),is not
influenced at all by the curvature of the mixing zone.

N S
415 S —
Theory—| _-~ )
| )i :
290 5 :
-2 |
~ |
. // { ¢
' i
265 ' 0.05 2 - a5’
. ' |
|
' Limiting incidence angle

Figure 16

Effect of Indﬁced Mach Number on Curvature of Jet Contour,
for Two-Dimensional (Plane) Flow, at Mo = 2.0
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It may be remarked that in this instance the total change

brought about in the value of M because of the expansion pro-

’
duced by the rotated flat plate} amounts to very sizeable increments,
It would be reasonable to expect, therefore, that, if the curvature
perturbation factor X1 is of only moderate size, then the same
method of calculation should certainly be satisfactory to account
for such curvature disturbances brought about during the process

of reattachment.

In the case of a flow surrounding a body of revolution,
the rigorously exact working out of an equivalent procedure as
that just described would entail a great deal of labor, On the
other hand, it may be remarked that in the case of a body of
revolution the intensity of the perturbations which might be
encountered in any foreseeable practical case would tend to be
much less strong than in the situation just described which per-

tained to two-dimensional flow.

These preliminary observations will suffice for the
present to indicate the significance of Eq. (1). It is the object
of the discussion to follow to retrace the development in more

detail in order to make these relations more precise and useful,

I11.1.2 - Determination of the Initial Curvature of the Streamlines
in the Detached Jet-Like Flow
The physical situation to be analyzed first is that of
a supersonic inviscid stream which is coursing along the forward
surface of a rearward facing step, whether representing a two-
dimensional configuration or a body of revolution with central
axis coinciding with the coordinate axis 0% . In the region of
the flow which lies upstream of the detachment occurring at the

shoulder B the nature of the flow may be specified, in all respects
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having any bearing on the character of the subsequent local
developments of interest in this study, by evaluation of the
following parameters: Mach number, Mo; the direction, wo’ and
the curvature Xo of the contour of the constraining wall at B;
the tangential gradient of pressure, and the normal gradient of
entropy there, denoted, respectively as | '

1 3p, (a5

These starting values can be cbmputed by having recourse
to»rigorous calculational procedures such as given in Reference 3,
or they could - be determined experimentally by measurements made’
in the wind tunnel. In any event, it will be assumed for present
purposes that these quantities have been evaluated in some fashion
prior to the time when the need for their values crops up in what
follows.
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Figure 17

Geometric and Aerodynamic Factors Perturbing the
Axially Symmetric Flow Past a Blunt-Ended Body
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In order to describe how the flow behaves in expanding
around the shoulder B (see Figure 17) some results previously
discussed in Reference 3 will be recalled and, in addition, the
following notation will be introduced:

f a = arc sin 1
M
dy - d)x = dy

dy + d\ = - cot a 3 = dp

ds
ds=-ﬁ

where ) and y are the epicyclic coordinates pertaining to the
hodograph plane, and where s = S/(yR) is the reduced entropy.

Now if £ and m represent the curvilinear coordinates
of a point in the plane of the flow which is marked off by a grid
of Mach lines, it may be shown that, for axially symmetric flows,
the following system of governing equations is valid, where y
represents the distance of the streamline from the axis of symmetry:

9\ _ , sin ¢ cos a 3s _ sin e sin ¥ 1
oL 2 kD 2 y
] ° sin a cos a 9s sin ¢ sin V¥ 1
! wm =t 5 m 2 y
0s = EE = s sin a.

Y om n

In the case of a two-dimensional plane flow the same
formulas govern the variables but the terms involving y merely
must be dropped.



Page 67

If X is now used to denote the local curvature of a
streamline it is found that the following relation must hold true

2

2 X cos @ = <& + sin“ a cos a sn

)
o4

she

and this is so regardless of whether the case in question refers
to two~dimensional plane flow or to axially symmetric flow,.

The theoretical problem which must now be solved consists
then in carrying out an examination of the local flow phenomena
which take place during an expansion around the shoulder B in

. 0 o
order to be able to determine what the values of 5%, m’ and Sy
become after this expansion occurs.

Such a study will be found to lead to the following
formula for the initial curvature X1 of the flow after the expansion
has occurred:

a
2
(2) X1 a, Xo + 5 + ag sno + a, Go

The coefficients, al, which have been introduced into
%k
this equation are described in detail in the Appendix . It may
be noted that they represent functions of the form

ay = £, 00, My, 4,

In the case of two-dimensional plane flow the coefficient
ag disappears, and the expression as given in the Appendix 2 for Xl
is rigorously true, unlike the case for axially symmetric flow, which
is only an approximation.

*The numerical evaluation of these coefficients has been carried out
by the ONERA computing staff; the resulting tables may be obtained
by inquiry to this office.
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In the case of an axially symmetric flow the symbol D
represents the diameter of the circular cross-section of the base
from which the separation is taking place. The expression pre-
sented in Eq. (2) is not truly rigorous in this instance, because
the initial curvature of the Mach lines at the shoulder B has been
ignored in arriving at this formulation of the result.

In view of what is now known the problem is formally
solved, because the governing parameters for the upstream flow are

assumed known; i.e., it is taken for granted that Mo, wo’ sn s Go,
o)

and wo are known; so that, by aid of Eq. 2, the curvature xl(Ml)

becomes known. Of course, Eq. (1) may be used to find wz, and,

inasmuch as §, = P(Ml) - P(Mb), then it follows that the complete

solution of the problem may be worked out.

NOTE: 1If in a given flow there exists on the upstream
side a prescribed expansion from Mo to M1 and one assumes that
the variations are going to be of weak intensity, indicated
symbolically as 6Xo, 6sn , and 6Go, then it may be deduced from
Eq. (2) that the correspgnding small change in the initial curvature
of a jet streamline will be given in this case, as

6a2

1 6Xo + - + ag 6sno + a

BX, = a

1 8G

4 o)

where the result is valid to second order in Xo, S, and Go.
0
In addition, the jet streamlines will not have any
curvature. Furthermore, the coefficient a, will disappear in the
two-dimensional plane case for which the upstream undisturbed flow
is at Mach number Mo' By comparison, it may be observed that, for

an axially symmetric flow with an undisturbed upstream Mach number
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of Mo ahead of the shoulder B, the curvature introduced by the
body of revolution must be represented by the term X, = a,/D.

111.1.3 - Importance of Curvature Effects on Subsequent Reattach-
ment Phenomena

(a) Case of axially symmetric flow with uniform upstream Mach

number of Mo'

The remark just made above furnishes the means for
determining the initial curvature Xl of the jet boundary as a
function of the external Mach number attained after expansion, Ml'
On the other hand, it is well-known that the angle Wl that the jet
boundary attains after the expansion is given by the Prandtl-Meyer
relation for an expansion, which applies in this case as well as
in case of two-dimensional plane flow. In consequence, one may
compute vy from

Wl = P(Ml) - P(Mo)

and, furthermore, Eq. (1) allows one to write that

- 1’ "q 1 (o}
(3) R h cos wz
sin Y

X, (M)
provided the postulate of Section III.1l.1 is adhered to.

Here the value of the Mach number in the external inviscid
flow is assumed to be obtainable from experiment. It should be
possible, for example, to determine the value for the empirical
coefficient of curvature effect,J\R(Ml), by measuring the base

pressure on the body and then making use of Eq. (3).
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By analysis of known experimental results, therefore,
one will be able to establish the empirical constant in this
function, and it will serve, consequently, as representing all
flows which are axially symmetric and which do not deviate greatly
from a uniform upstream flow, '

(b) Case of two-dimensional plane flow which is not uniform.

The approach to this problem is made by first considering
the reference case for which a uniform Mach number Mo holds up-
stream of the shoulder B, and for which the downstream external
inviscid flow Mach number is Ml’ and for which the required
angular deflection at reattachment is Y(Ml). To this referenqg
flow with uniform upstream Mach number of Mo there is now applied

a perturbation represented by Xo, sn , and Go’ which is sufficiently
O N
extensive to influence the whole length of the jet boundary. As

result of this perturbation there will be induced in the flow a

curvature represented by Xl’ and, according to Eq. 1, a change in
Mach number, represented by Ml + 6M1, will be introduced, which

will obey the formula

h cos wz

X

vt
¥y = BMy = =0 -y sy X

1

oy
aM1
deflection for reattachment, as given in Figure 7, and where the

1 oMy

|
where Yl is the partial derivative of the required angular

increment 5 is given by the relation © = P
wl wl

1 M

in which Pi = - — .
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In this instance one then finds that the curvature co-

efficient is given by

(Pi + ?i) sin ¥ oM
A = - . .
p h cos Yz X

This expression also affords the possibility of establishing
the empirical value of.Ab, the curvature coefficient due to non-
uniform flow in the case of two-dimensional plane configurations.

The empirical values OfJ\p can be obtained, for example, by use
of the method described in Section II.1l.1.

III.2 - Experimental Confirmations

II1.2.1 - Procedure for Applying the Deductions now Elicited to
the Case of Axially Symmetric Flows.

- The curvature influence coefficientJ\R(Ml) has been
determined by making use of a large compilation of experimental
results obtained with cylindrical models having blunt bases.
The pertinent Reynolds numbers were quite moderate, since
Re§;107 [ﬁee Reference-él. These results permitted the deriva-

tion of a law linking M, to M ; i.e., M, = f(Mo).

1 1

It is important to point out that this empirical law
was developed by having recourse to experimental cases where the
boundary layer, encountered just upstream of the bluntly cut-off
base, was of only moderate thickness, although it was not entirely
negligible nonetheless.

On the basis of these results it was then possible to
calculate the initial curvature of the jet boundary by making use
of Eq. (2) of Section III.1.2. Subsequently, then, the curvature
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influence coefficient,A»R(Ml) was obtained by use of Ea. (3), and
the variation of this quantity, as a function of the Mach number,

M is displayed in Figure 18,

1’

[ %2
A :P(Mo)"‘P(Ml)"'\F\Mj) Cq»‘, )

R -
JﬁR'A sin'Y X
2 ¥
A \\\
\\\\\\\\\\\\\\\\\
N
i N l
. QS§§§5 | ‘ E
Q§§§§> Q&§ Scatter-in the experimental data
)
|/ | | )
0= 3 s

Figure 18
Curvature Influence Function, ~ R’ As Function of the

External Flow Mach Number, M1

This curvature influence coefficient may be considered
to be a unique function of the Mach number, Mlﬂ for flow .con-
figurations which do not differ much from the reference case
(i.e., for a cylinder with a blunt base). Consequently, it is
then possible to determine the effect of certain elementary
perturbing influences on the reattachment phenomenon which érise
downstream of an afterbody which has any shape whatsoever, so long
as a 1inéarization_of the effects of the perturbations is justi-
fied. The perturbations in question may be pressure gradients or
entropy gradients,lfor example, introduced by the non-cylindrical
body shape.
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The most immediate practical use to which this infor-
mation may be put is the calculation of base pressures, that is
to say, the calculation of the Mach number, Ml'

This particular calculation may be carried out by
following either of the two acceptable methods given below. The
essential assumption in either case is that the final direction
of the downstream flow after reattachment must correspond to the
same direction as the upstream approaching flow, for which wz = 0
in this instance.

(a) The most direct method of attack is to proceed according to
the following algebraic steps

- ¥y - 2Ap - h - siny - X = v(M) Given by Eq. (3)

LTl PR P(Ml) - P(Mo) Use of Prandtl-Meyer
formula for expansion
a around corner B
2 .
1 Xo + ﬁ; + ag sno + 2, G0 Given by Eq. (2)

Xl(Ml) = a
by which means the solution for the Mach number M1 can be most

easily obtained by use of graphical aids.

(b) A variational technique may be resorted to which depends on
finding deviations from a given experimental reference case. This

method is also based on use of the same three formulas given above.

For the applications to be considered below, the experi-
mental reference case is taken to be the one corresponding to a
cylinder with a blunt base, for which it is true that wo = 0.
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I11.2.2 - Numerical Examples

The effects to be investigated in these numerical appli-
cations are of two different categories. First, a calculation
will be carried out to show the effect of boattailing (see Figures
19 to 21), for a Mach number range going from Mo = 1.91 to MO = 3.24.
Second, computations will be made to indicate what happens when
there is a strong entropy gradient upstream of the base. This con-
dition will be examined in the special case where the body is
cylindriéal with a well-rounded nose, the radius of .curvature of
which is quite large even at the tip (r/R = 0.765)., The Mach
number selected for this calculation is M =4 (see Figure 22).

oS

c

A 1{; ;\M

T 1"
|

C® NACA experimental results O® NACA experimental results

0 Calculated value, { =0 O Calculated value, § = O
---- Theoretical predictions c-- : °

# _—— - £ --~ Theoretical predictions
3 R %
| |
0.9 F——
D,—C=0.5._. o L’/’ l 0.9 1) A
0 {;w/i E Z;C.zasL__I j;/
§ | A
.7 3 i = - !
0 (r// &-.—0.7«_.; ' i 0'7([—/—/‘)" ' D, 0.8 l
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06z 4 -6 -8 D 0807 <4 -6 & 1o
_ . Figure 19 Figure 20
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N e
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=
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The initial given conditions for these calculations

(i.e., Mo’ S, Go) were determined in one of two ways, either
o)

by use of theory (i.e., by use of the method of characteristics,
as expounded in Reference 3), or by measurement of the pressures
on the afterbody to give Go and Mo and by conducting a total
pressure probing near the corner B in order to obtain sno

It may be fairly stated that the recommended method of
calculation leads to satisfactory prediction of the base pressure,
particularly when the variational procedure is followed (see
Section I1I1.2.1,b). This procedure has the advantage that it
eliminates, for all intents and purpose, the effect of the
boundary layer. Thus this case comes closer to being represented
by the deduced equations because it was not possible to include
the effect of the boundary layer in the derivation of the formula
arrived at for describing the curvature influence coefficient /.
as given in Section III.2.1.

R’

In order to improve the accuracy of the direct approach
it would be desirable to establish a law, through a systematic
series of tests, which would give the effect of the boundary layer
parameter 62/h upon the curvature influence coefficient,.ﬁgR.

From now on it appears that it would be justifiable, on
basis of the results now obtained, to take it for granted in any
application of this information to practical cases that

ISt:

for axially symmetric flow and for two-dimensional plane flow

the required reattachment deflection angle Y(Ml) is identical

2nd:

is characteristic of axially symmetric flows.

there exists a curvature influence coefficient,_A_R(Ml), which
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IV. Conclusion

The preceding analysis has shown that the factors which
influence the reattachment phenomena may be classified into two
categories: On the one hand, there are the internal fundamental
factors describing the local behavior of the flow which reflect
the type and extent of the mixing that has occurred between the
external flow and the internal trapped recirculatory flow. On
the other hand, there are the external factors which act principally
to change the geometric form (i.e., the curvature) of the jet-like
flow issuing from off the shoulder of the body, so that in con-
sequence the angle obtained by this flow, just before reattachment
takes place, will be shifted from the value which would otherwise

have arisen.

As result of the present studies having to do with the
internal fundamental factors it has been possible to demonstrate
the following significant theoretical results (this analysis was
based primarily on the work presented by H. Korst in Reference 1,
to which was added an additional hypothesis concerning the distri-

bution of temperatures in the mixing zone):

(a) the situation in which the stagnation enthalpy in the
mixing zone is variable from streamline to streamline
may be handled by a simple device which converts this
situation into one that is equivalent to the case where
the enthalpy is constant throughout

(b) demonstration that the effects on reattachment of the
presence of a boundary layer may be considered as
equivalent to the proper amount of blowing into the

dead~-water region.
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In the main, these theoretical deductions have been
supported by confirming experimental data. At the same time,
however, careful scrutiny of the results discloses that further
research is still necessary in order to establish securely- the
value of the required angular deviation at reattachment in the
limiting case where the thickness of the boundary layer in the
approaching flow tends to vanish,

The external factors acting to vary the curvature of the
jet boundary which were examined next in this investigation were:
the effect produced by a pressure gradient or entropy gradient
in the external flow, and, in the case of axially symmetric flows,
the effect of the slope and curvature of the streamlines in the
flow field which is produced just before separation from the base,
A simple formula was obtained by resort to the method of charac-
teristics which described adequately the effect, on the initial
curvature of the jet-like flow off the base, produced by all
the above-mentioned factors., This initial curvature of the jet-
like flow can then be chosen as the sole parameter for representing
the ultimate effect of these external factors on the reattachment
angle.

If it is taken for granted that the required angular
deviation at reattachment which was established in the case where
there was no curvature along the jet boundary, for an isobaric
pressure distribution, is still to remain valid in the envisioned
cases, then the problem of determining the reattachment angle in
these cases turns out to revert merely to finding a curvature
influence coefficient. It is a simple matter to determine such
a curvature influence coefficient by deducing it empirically from

a limited number of pertinent and systematic wind-tunnel tests.
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From the experimental results which were available it has been
found possible to provide a preliminary approximation for such

an influence coefficient in the cése of axially symmetric flow.
Experimental experience based on measurement of the base pressures
of bodies of revolution has given very encouraging confirmation

of the over-all effectiveness and correctness of this theory.
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Appendix 1

Determination of Mys M5

1. Basic Relations.

The theory of isobaric mixing is explained in Section
IT1.1, at least in regard to the most essential features. It is
merely necessary to recall here that this mixing theory leads to

the velocity profile law given by the relation

n Bz
1 1 - B\ ~
(1) v =31+ ert(y - npﬂ v A fco1<n - )e dB.
-1
p

For present purposes it is helpful to start off with the additional
relationship which is derived from the law governing the density
profile across the boundary layer, which may be expressed as

T

2] o1 T (2] (ul, LA w).

2. Determination of M-

It is the purpose of this paragraph to determine the
downward displacement, UL of the axis of the velocity profiles
at each axial station x in such a way as to abide by the conservation
of momentum requirement throughout the flow; i.e., for any value
of the downstream location parameter np (see Section I1I.1.3). The
conservation of momentum requirement was written near the beginning
of Section II.1.3 of the main text. It is convenient to introduce
the following set of non-dimensional variables at this point (see
Figure 3):
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p P
y Py
N = . = .
where ny = 5 * M, T 5§ M, = Ox" T
Y,
Yy Yy *+ ¥
' = _.__N o ' = _L__l . =
N 5 ﬂp 5 np ﬂN + ﬂl

Consequently, the statement of the conservation of
momentum may then be converted into a relation that requires the

equality of the two integrals:

¢
npbf

Inasmuch as ©

N JOSRG
-

= 1 and ¢, = 1 for values of >1, the
1 o

1
integral on the left hand side may be written as
1
I, = - + %] 2 d
1 N ﬂp ﬂp 1 91 c.
0

In addition, it is always possible to choose N to be
sufficiently large so that the values of 6 - 1 and o - 1 will be

less than an arbitrarily selected small value, e, whenever nQZnN.

Hence, in this case the integral on the right hand side
may be written as
N

2
12==n1+f9co dn.

-0
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By invoking the equality of the two integrals it
follows then that

1 N
M =y - np + ﬂp Shel ©q dc¢ —\ge o dn
(o} -0
or by rearranging the form

1 (o) -0
(2) = -7 (1 - o 2) d¢ - O mz dn + | (1 - © wz) dn
M P 1 %1 ’

o Lo o

Now the last one of these integrals is convergent, so

that by passing to the limit, My~ @ it turns out finally that

1 o N
2 2 2
n = - npjn(l - 8, v]) d¢ - J{e o dn +‘§(1 -6 o) dn.
o -0 (o]

3. Determination of nj

3.1 Analytic Set-Up for the Analysis

The conservation of mass flow was discussed in Section
II1.1.4. When the non-dimensional form of the variables is intro-
duced into the basic conservation equation and when the downward
displacement of the profile axis as just described above is taken

into account, then this continuity relationship may be written as

T'pjel ©p 9 =g ¢ an
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and because &, =0, =1 for ¢>1
while 6 - 1<e

for 7 >Ny
o - 1<e

then the continuity equation may be rewritten as
1

My
T‘ijel CD]_ dC + "7N - Tlp =S 6 oo dn + 711-
) 5

When the result just obtained in the preceding Section as Eq. (2)
is introduced, it then follows that

1

N My

2
\S‘Qcod‘n= ‘np 91 cpl(l - cpl) d¢ + 6 o dn
TIJ -®

5
Upon adding and subtracting the term j; © o dn to both sides of
-0

this equation, it turns out that, upon passing to the limit N7,

. 1 +
nJ b

(3) ©pdn==-m,3)6) 01 -0)A + | 6wl - o) dy

- o -0

inasmuch as the integrals have now been made convergent.
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If one cares to introduce the momentum thickness of
the boundary layer defined in terms of ml(g), then the above

equation may be reduced to the somewhat more neat form of

Og

(3") 9cpd11='—"np———+ 0w (1 - ) dn.
o)

-0 -0

Once this relationship has been established it is not
difficult to derive the expression given as Eq. (7) of Section
I1.1.4 in the main text.

3.2 Notes Concerning the Numerical Solution of Equation (3)
The following two integrals

nj .

I, (1) = \8ody . ——

1 J 5 1-u2

-0 1

+00
— — 1

and I.(w) = I,(0) =160 (1 - @) dn + ——5
1 2 1 2

have already been tabulated by Korst for the -arguments

=0 =— - and © = 1 (1 + erf 7).
2 2 2
1

Consequently, the problem arises of using this information
for obtaining the values of the integrals when the argument is
W =0 (n,np), as given in Eq. (1) of the Appendix.
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If np and ml(g) are given, then it is necessary, first
of all, to compute the values of w(n) by means of Eq. (1).

Let m(p) be the corresponding, numerically evaluated,

inverse function of o(n), and, furthermore, let M(yp) be the

analytic inverse of o(n), and define a differential as
81n(w) = 1) - M(w)
where ¢ is now taken to be the independent variable.

Upon making use of the shorthand notation that K = m(nj),
then Eq. (3) of this Appendix may be cast into the following form

K : 1
J‘ v do dn d (5m) 5, 1 \j"cp(l—cp) dp |d7 d (5m
_ |+t — Y| =, = —s + — + — (57
2 2 P 2 2 2
/ 1 - uy o dep deo 5 1 - uy ) 1 - uy o dcp dqo

—

The expression just obtained may be given the following

more simple symbolic representation

) 1

2
p 5 1 - ui

I, (K) + IJ(K) = - + I,(w) - Tz(m) + (=) - Iy (=)

where the definitions have been introduced that

K
¢ dop d
= | ——o—5— &
1 - u, o dep
1
and I (=) - Ij(=) = el - g) g¢ a (57m)

l—ulcp dcp
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and where, by hypothesis, it has been stipulated that

Tl(f) = I;(=) - Iz(w)

if (X) represents the solution to Eq. (3) for the condition
where = 0.
p

Finally, therefore, because of these above-noted agreements,
the equation which serves to determine K is the following:

6
(3" T + T[E =T, ® -1 2 + 1) - I3(e)

where the quantities appearing on the right hand side are known,

This interpretation of the equations thus permits a
relatively simple calculation to give the desired result provided
one has recourse to the existing tabular data and after a numerical

evaluation has been made for &n(p), Iy, and I,.

4. Determination of ¢' = (%%-)
pn,,o
P

(a) In the case that np = 0, then Eq. (1) reduces to

(1 + erf 7n)

DN

EE=

and Eq. (3) provides the corresponding value of nj. Consequently,
with this boundary coordinate determined, it follows that

X = 5@,).
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(b) In the case that np # 0, but where it still remains
minuscule in size, one may rewrite Eq. (1) in the appropriate
form of

(4) oM = o(n) + T, ©'.

On the other hand, since it is true that

2
- (-1

_9 - - 2 p

aanrf (n nps:] l/_'rr-e ’

then for the condition of np—~>0, this becomes

2
=N
2 [érf (n -7 i] = - —2— e .
on, p J‘;
Now the integral appearing on the right hand side of Eq. (1)
may be recast into the form

2

$ B2 : (c )
| - | - (¢ -
1 f“’l <"7 — B>e as = —p—-fcol(g) e - d¢
= e &

n—np

- B
P

provided the substitution is made that n

=G'

One may obtain without trouble the value of the derivative
of this expression with respeét to np, under the supposition that

n.—> 0. The result is
p 1

° wl(g) dc.
\ ’ m

(o]
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Consequently, it is found that

1

2
' dp e
(), LB e of

1,0 °

It is worth noting, in addition, that

e
\, m dn
1 1
o]
Yy
and that 1 - 0y (¢) d¢ = i - ”1) d¢ = —=
)
o

where 51 is the displacement thickness of the incompressible
i
boundary layer having its velocity profile defined according to
L y
the law that % =0 (6>.
It turns out thus that the differential quotient of

interest may be expressed as

5

1. dy
(5) o' = - —
B dn
dn.
4.2 Determination of 7' = - .
dn
pn=0

p

When the derivative is taken of Eq. (3) of this Appendix,
and if the results obtained above as Eq.(4) are made use of, it
follows that
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7. 4o
J 2 2 - 2 -2
1 Bq K dn ¢' (1+u] @) @' (1-2 p+u] §°)
T2 s T2 a o Jaweehr Mt g TZemr

where the usual notation is employed defining X as B(ﬁj).

If, now, one inserts into this expression the value of @'
obtained in Eq. (5), then the integrals appearing on the right hand

side may be expressed in terms of p, used as the new valuable of
integration. Hence

1 1 T
1 6, K 2% dg 1+u§62 & %1,
__.______o_...._.'.._______—_zo n'= — - — ————
1 - u? B 1 - u2 K (1 - u2 ®2)2 a1 - u? m2)2 B
1 1 4 1 X 1

This expression may be integrated directly without trouble,
to give the final result, which turns out to be as follows, when all
steps are completed:

N

(6) Nt = —= - 2. .
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Appendix 2

Initial Curvature of the Isobaric Jet Boundary
(Two-dimensional plane flow or axially symmetric flow)

1. Fundamental Relationships

The method of characteristics is based on the mathematical
idea of being able to define the state of a supersonic flow at an
arbitrary point Q by aid of three reduced variables ), u, s, which
are linked to the direction of the flow |, to the Mach number M,
and to the entropy S, by means of the relations

r. .
U= A= ¢ + constant

(1) u+x=p<M)-S%dV —

—

£ M

s=...__

7R

Let-z and-ﬁ designate unit vectors which are tangent
to the Mach lines passing through Q, and 1et_?. and‘g' represent
unit vectors which are lying parallel and normal, respectively, to
the velocity vector at the point Q. It is found, then, that the

governing equations for the flow may be expressed as

" 9 sin @ sin § , sin 2 «a
LM T 2y T3 %1
ou . - _ sin a s1n4& sin 2 «

-~ S, = 4+ 8 = sn sin «
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where y represents the radial distance of the point Q from the
axis of revolution of the axially symmetric flow. In the event
that the situation of interest is a two-dimensional plane flow,
then the term involving y vanishes (it may be considered that
the axis in the axially symmetric flow has retreated to an
infinite distance).

It may be shown immediately that the curvature X of
a streamline in such a flow, measured at the point designated by
the number tripple (), u, s), is given by the relation

.2
(3) 2 X cos a Wy - xm + sin” a cos a s .
In a coordinate system based on the characteristic net
(4,m), the calculation of the streamline curvature X is easily
carried out by aid of Eq. (3) provided the functions \ (s ,m),

u(4,m), s(4,m) are specified.

Curvature of the Isobaric Jet Boundary

Along the isobaric boundary of the jet issuing off the
rearward facing step under examination, for which it is true that
M = constant, it is required that

0
-6—1?()\+u)='0

where

3 1 3 , 3
t 2 cos a\ om & 94

Consequently, if one makes use of Eqs. (1), (2), and (3)
of this Appendix it follows that

sin «a sin §

y

2 X cos a = + sin2 a cos a sn = 2 A

m
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2. Initial Curvature of the Isobaric Jet Right After the Corner

Expansion

Let a zero subscript (o) denote upstream conditions, so

that Mo, 11’0, xo, xo’ uo’

flow ahead of the base region, before an expansion subsequently

So represent the known condition of the

takes place at the corner B, for a flow configuration which is

schematically representéd by the accompanying sketch.

Also, let the differential coefficients, denoted by
Xm R U and s, Serve to define the known nature of any non-
o o o
uniformity present in this upstream flow. Anywhere along the
Mach line (mo), which is indicated in the appended sketch as being
coincident with the 1line BQO, one has that the following relations

hold for an arbitrary point on m_:

Il
>
+4
]
>

I
>
+
(o4}
>

x(mo)

[ ulm)

I
=
o
+
=
o
jol
E]
i
o
o}
+
o
T

5 = m sin a s =g s,
\S(mo) S0 t Mo o o ot 5
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Now let attention first be directed to what happens if an
expansion denoted by (mo,ml) is allowed to take place around the
corner B, but in an upstream flow field which is uniform, and denoted
by (xo,uo). It is well known that under these circumstances (and
even if the expansion is taking place around the base of a body
of revolution) the expansion process obeys the Prandtl-Meyer law,
within a region which is very close to the corner B. Very close
means, in this case, that the Mach line ) is not supposed to be
altered by the expansion, so that in this infinitesimally small
area it is true that

For such an expansion the local flow angle is given by the relation
My = My * P(Ml) - P(Mo).

Finally, if the stipulation is obeyed that the expression is to
take place isentropically, then the further condition may be
premised that

It is also convenient now to take it for granted that
in a region which is infinitesimally close to the corner B the
fan of successive Mach lines which issue from B will be indis-
tinguishable, for all intents and purposes, from a sheaf of
straight line rays. This hypothesis is rigorous for the case of
an expansion taking place in a two-dimensional plane flow, but,
of course, it will constitute a slight approximation in the case
of axially symmetric flow.
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With these understandings and definitions made, it is
now possible to proceed to calculate the Mach line (1) which
emanates from the point Qo on m_. The abscissa of the point Ql
in the characteristic system is Ml’ where Ql is located out along

the ray m This abscissa is given by

1

m H (a,)
(5) - 1
m H (ao)
cot 2 a-
where 1log H(a) = - (y + 1) da.

y - cos 2 «a

Meanwhile, the continuity equation for the mass flow allows
one to obtain the areal dilation of the streamtubes as they undergo

the expansion process. This area ratio may be evaluated from

Z(Ml)

4
(6) —_— ==
n Z(Mo)

o

whereE:(M) is used to represent the conventional mass flux ratios

With the foregoing suppositions in mind, it is now pro-
posed to superimpose on the uniform upstream flow (Mo) just des-
cribed a disturbance represented by the perturbations &\, 5y, and

s mentioned above. The disturbance under discussion is taken to
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act at the point Qo and it is to be taken for granted that

it is

weak enough so that nothing is changed in regard to the net of

Mach lines and flow lines, from what was true for the flow

our perturbations.

with-

In consequence of these agreements, then, it will be

found that, on the downstream side of the corner B, provided the

relations given above in Eq. (2) are made use of, the following

holds true:

S =

ny (M) _ = (e))

Sn, 2- M) = (ey)
and

21

_ - . . . 2 < (a )
X(Ql) X(Qo) m, sin a sin 4+ Sin_a cos «a s, o
2y 2 o = (a)
a
(o)
y +1 H(a ) da
y — cos a H(al) sin 2 a
By bringing in the relation given as Eq. (5) the above
expression may be recast in slightly different form as
g
Ly B (rr m@
my m, H,y y - cos 2 a ﬁYal) sin 2 a
%20
sin a sin ¥ sin2 a cos a z:_-(Mo)

2y 2

Iy s ( a) ‘
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In this expression the value of { is given by the

Prandtl-Meyer expansion as
v = wo + P(a) - P(ao).
In the practical examples which are intended to be
analyzed by use of this procedure it may be assumed that { - ¢°

will be small enough so that it will be legitimate to make the

approximation that
sin = sin wo + (P(a) - P(ao)) cos wo

and the integral to be evaluated then may be broken down into

terms of the following three auxiliary integrals

/‘
y+1 A2 H (a) da
Aa) = j
2 cos a (y - cos 2 a)
a
y +1 P (a) H (a) da
{ B(a) = ~§
2 cos a (y - cos 2 a)
a
y + 1 H (a) sin a da
C(a) =
_ 2 > (a) (y - cos 2 a)

These integrals have been tabulated, so that the value of xm

1
may be obtained without trouble, and then the initial curvature

X1 may be computed by aid of Eq. (4).
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Before launching out on any such calculational procedure,
however, it will be well worthwhile to vealize that it is more
convenient for making actual numerical applications to introduce
some parameters which will be easier to work with than this value

of Xm for the Mach line upstream of the corner B about which the
o
expansion is to take place.

When Eq. (3) is evaluated for the flow on the upstream
side of the corner B it takes the form
2 X cos a = - A + sin2 a cos a_ s
o o Lo m, o o "ng

and it is easy to verify that

2 cos a_ 5 o+ u) = 2 sin a cos? a, - Goo=A, + My - Sin e, sin |,
ot b (o} o y
1 apo
where Go = -9t represents the tangential gradient of pressure
o

at the point B but before encountering the detached flow zone.

These two expressions may then be used together to re-

place the quantity Am by the more directly measurable quantities
o

XO and Go' It will be found consequently that if 2 y = D, then

the initial curvature of the jet boundary is given by the relation




where a

Note:

In the
must be dropped,

rigorously.

In the
above is only an
the curvature of
though the basic

expansion.

s and ' - a
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H cos «
o o

H, cos a

1 1

flow is imagined to be unperturbed before the

case of axially symmetric flow the formula given

the Mach lines which is present in this case even

sin a, sin wl _ HO Sin a  sin wo
cos al H1 cos al
-1 (sin § - P_cos {§ Y(A, - A))
o o o 1 o)
H, cos «a
1 _ 1
) (B1 - Bo) cos wo
H1 cos al
s cos «a H s c, -C
l sin2 1 =9 _ sin2 a . 0. o 1 o
2 S- 1 cos al H1 ‘Hl cos a
1 Ho cos2 ao
-~ sin ao e .
Y H1 cos a,
case of a two-dimensional plane flow the term a,

and one may show that the above-given formula holds

approximation because it does not take into account



in the case where the expansion taking place
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at the corner B occurs through means of the mirroring expansion

(Lo,Ll), then the foregoing formulas for the

to read now:

4
} 1
¢
Finally,
fan, denoted by
constantsa2 and a, need to be modified slightly,
W - sin @, * sin wl . EQ . sin a Sin wo
2
cos a, H1 cos a,
sin wo + P0 cos wo
+ (A1 - AO)
H1 cos a,
cos ¢
- o (B, - B)
H1 cos al
1 3
1 HO cos a_
i ay == sin ao —_ .
7 H1 cos a,

i s i

L



